ARISTARCHUS'S BOOK ON THE SIZES AND DISTANCES OF THE SUN AND OF THE MOON

WITH SOME EXPLANATIONS OF PAPPUS ALEXANDRINUS.
IN LATIN TRANSLATED AND
ILLUSTRATED WITH COMMENTARY
FROM FEDERICO COMMANDINO OF URBINO
$\mathcal{P} \mathcal{E} S \mathcal{A} \mathcal{R} O$, by Camilfus Francischinus
$\mathcal{M} \mathcal{D} \mathcal{L} \mathcal{X}$ I I

With privilege granted by PONTI.M.AX. for then years

Introduction, translation and notes by Antonio Mancini

Latin text in front
'Consider ye the seed from which ye sprang: ye were not made to live like unto brutes, but for pursuit of virtute and knowledge. So eager did I render my companions, with this brief exortation, for the voyage, that then hardly could have held them back.

Dante, The Inferno XXVI

In memory of Emma Castelnuovo

Acknowledgments

I are grateful to Livia Borghetti, former director of the Central National Library Vittorio Emanuele II of Rome, for facilitating my access to ancient texts, and to Letizia Jengo, professor of mathematics, for helping me in difficulty moments. I thank also specially my wife Paola, my daughter Chiara and my granddaughter Flaminia for their support in the revision of the text.

INTRODUCTION

I FEDERICO COMMANDINO AND THE DISCLOSURE OF THE ANTIQUE WRITTEN OF MATHEMATICS

The evolutionary impulsion imposed on the present society by the spread of computer technology reminds us of the great acceleration that the Gutenberg's movable types printing invention, in the midfifteenth century, gave to the knowledges diffusion, which at the end of the century, facilitated the so-called scientific revolution. In the last years of the fifteenth century hundreds of thousands of books, writin with this new technique, were circulating, and many literates, artisans, soldiers, architects and students could easily access texts unavailable in the past for their rarity, as handwritten or products with primitive print shapes.

In the sixteenth century the books took on a form more resembling to the modern one. They were no longer a simple translation of handwritten texts, but they had a new formatting: author, title, frontispiece, dedication, privilege, etc. The power of the new invention increased interest in ancient writings of mathematics, astronomy and natural philosophy. Numerous authors devoted their intelligence to the print edition of ancient manuscripts. In 1482 the Euclid's Elements came out for the first time in Venice by Erhardus Ratdolt's printing-shop ${ }^{1}$. Niccolò Fontana from Brescia, better known as Niccolò Tartaglia, translated "Euclid's Elements for common use and utility from Latin to Vulgar" and published them for the first time in 1543 in Venice ${ }^{2}$. Thomas Gechauff, better known as Thomas Venatorius, published in Basel in 1544 the complete Archimedes work in Greek ${ }^{3}$
In Italy Federico Commandino published many greek ancient mathematicians works into latin, reaching a clear fame. ${ }^{4}$ Federico was born in Urbino in 1509 and the cultural climate of the city certainly had an important role in his intellectual development. His father, Giovan Battista, had been the military architect who, on behalf of Francesco Maria I della Rovere, had reinforced Urbino's
walls to adapt them to resist to the growing artillery, his grandfather had been secretary of Federico da Montefeltro ($\dagger 1482$). This prince in the course of his life besides the art of war, had cultivated liberals arts by protecting artists and literates and had created a library that was considered one of the most illustrious. Federico Commandino studied medicine in Padua by completing his studies in Ferrara. He became the personal physician of Cardinal Ranuccio Farnese, brother-in-law of Guidobaldo della Rovere Duke of Urbino, from wich he gained protection. During his life, however, he was especially attracted to mathematics, and devoted his intellectual work to the edition of ancient texts, transcribing them from manuscripts that, being received through the long medieval ford, were sometimes in poor conditions, as in the case of De Magnitudinibus.

In 1558 Commandino published the \mathcal{A} rchimedis Opera non nulla containing Circuli Dimensio (cum commentariis Eutocii Ascalonitae), De Lineis Spiralibus, Quadratura Paraboles, De Conoidibus, \& Sphaeroidibus, De Arenae Numero. In the same year he published Ptolemaei Planisphaerium Iordani \mathcal{P} Panisferium Ptofemaei Planisphaerium Commentarius, elaborating a text of 1536 , printed in Basel by Johann Walder, this book included several works, among which the Ptolemy planisphere, drawn from a Latin manuscript dating from Tholosae Calendis Iunii anno domini MCXLIIII in turn version of an arabic text, and the $\mathcal{D e}$ planisphaerí figuratione of Jordanus Nemorarius, which treat about the projection stereographic of the celestial vault on the equatorial plane. In 1562 he published in Rome the Liber de Analemmate of Ptolemy, a work dealing with gnomonics, that is the study of the solar positions. It is possible in fact to obtain the local time from the position of the sun, detecting the shadow projected by a reference, called gnomon, on a flat surface; the simplest gnomon is made up of a shaft fixed in the ground that projects its own shadow over the surrounding area. It is known that in the construction of solar clocks, commonly called sundials, it must be borne in mind that the shadow of the gnomon varies not only with the hours passing, but also with the latitude of place and with the seasons; these different parameters must therefore be known and correctly
used by the designer. In the famous solar clock of the San Petronio Basilica in Bologna, designed by Egnazio Danti, rebuilt and expanded in 1655 by Gian Domenico Cassini, instead of a shadow, an eye of light is projected onto the floor surface, generated by a small hole in a wall perimeter of the church. Solar clocks of this size also allow to carry out with great accuracy other measurements taken from the position of the sun, with which the equinoxes, the cardinal points, the length of the tropical year etc. are determined. To the book of Ptolemy Commandino also adds a personal contribution for the realization of such instruments. The author did not have a Greek text and he used a Latin translation of a Arabic text. In 1565 he published the Archimedes' treatise on floating bodies and in the same year the Liber de centro gravitatis solidorum. The Commandino as translator is consolidated as an author; in fact, in the dedication to Cardinal Alessandro Farnese we read that he examines "perdifficilis et perobscura quaestio de centro gravitatis corporum", he then extends its search to the center of gravity of solid figures. Indeed only in 1908 will it be discovered by Heiberg in Constantinople the palimpsest that contained the Method on mechanical theorems, a writing of Archimedes to Eratosthenes, in which are also determined the barycenters of some solids ${ }^{5}$. The definition of center of gravity exhibited at the work beginning, is drawn from the eighth book of the \mathcal{M} athematicae Coffectiones by Pappus and is reported by Commandino both in Greek and in Latin version: "Dicimus autem centrum grauitatis uniuscuiusque corporis punctum quoddam intra positum, à quo si graue appensum mente concipiatur, dum fertur quiescit; \& seruat eam, quam in principio habebat positionem: neque in ipsa latione circumuertitur". 6

In 1566 he published in Bologna Apolloni Pergaei Conicorum líbri quattuor e Sereni Antinsensís phitosophi libri duo.

Commandino, who returned to Urbino after the unexpected death in 1565 of Cardinal Ranuccio Farnese, met in 1570 the Joannis Dee from London, a mathematician and lover of esotericism, who had collaborated on the publication of the Elements of Euclid in English. Dee had the Latin translation of Euclid's text on the division of flat
figures based on a manuscript in Arabic, this work was published in Pesaro with the two authors' names. The work, written in Latin and dedicated to Francesco Maria II della Rovere, was also translated into Italian by Fulvio Viani: "or persuadendomi adunque che ella se è piaciuta a V E. ne l'habito latino, non habbia a dispiacerle in questo nostro vulgare" ${ }^{7}$.

In 1572 he published Euclidis Elementorum libri $\mathcal{X V}$, his most famous work, on request (rogatu iussuque) by Francesco Maria II della Rovere, Duke of Urbino, a Latin translation of Greek manuscripts.

In the same year he published $\mathcal{A r i s t a r c h i}$ de magnitudinibus et distantiús solis et funae liber.

In 1575 the Elements were also published in Italian, from the dedication to the Duke of Urbino, signed by the son-in-law Valerio Spacciuoli, we learn that Commandino had just the time, before dying, to see the printed output. This Italian version, edited by his pupils under his supervision, had been requested by many to allow access to this work also to those who are not familiar with the Latin language. Moreover, the author had always said that the only aim of his life, and also why he had abandoned the practice of medicine, had been to come to the aid of those who wanted to devote himself to mathematical studies

In 1575 it was also published posthumously Heronis \mathcal{A} (exandrini Spiritalium liber, a short brochure that deals with various pneumatic devices such as siphons. In 1588, Guidobaldo dal Monte, his favorite student, published the Matematicae Colfectiones of Pappus with the commentaries of the Commandino. Editions of his works have continued in the following centuries edited in various countries by different authors.

II ARISTARCHUS OF SAMOS

The book on the magnitudes and distances of the sun and the moon is the only work of Aristarchus that has come to us. Vitruvius, in the first book De Architectura, counts him among the seven great mathematicians of the past together with Philolaus and Archytas of Tarentum, Apollonius of Perga, Eratosthenes of Cyrene, Archimedes and Scopas of Syracuse. We know that Aristarchus, mathematician and astronomer, lived before Archimedes, who died in 212 BC, because the great Syracusan dedicates to him some passages of the famous script $\Psi \alpha \mu \mu i t \eta s$ (Psammites or, in the Latin version, De arene numero or Arenarius ${ }^{8}$) in which he proposes to calculate the number of sand grains which can be contained in the whole universe. The work of Aristarchus has survived through numerous manuscripts in Greek, the oldest and most famous of which is contained in cod. Vaticanus Grecus 204 of the tenth century. ${ }^{9}$, but Commandino does not refer to which sources he drew for his translation.

Remarkable is the impact that the work produces on the reader; the hypotheses necessary for the subsequent demonstrations are in fact proposed in a concise, immediate and axiomatic form, surprising, if one thinks, they were formulated in the 3rd century BC. Based on these assumptions, Aristarchus builds a credible theory adapted to evaluate not easily quantifiable cosmic dimensions, rather commonly perceived as mysterious, and so he opens the way to further speculations. In his short treatise he does not mention any personal observation of the sky, indeed he much less care to provide an evidentiary basis for his assumptions, indeed his intent is to prove, with mathematical reasoning, some propositions from the initial axiomatic statements. Essentially the correctness of his theory relates to the assumptions, and any quantitative changes to the same hypotheses involve a quantitative change of the demonstrated deductions. This fact deserves some considerations.

The sizes and distances of the sun and the moon calculated by Aristarchus are not close to those we find today, the average distance of the sun from the earth, for example, is today valued at approximately 390 times the average distance of the moon from the earth and not 18-20 times, as instead Aristarchus had calculated and this happens not for lack of mathematical proof but because the assumption of the fourth hypothesis of De Magnitudinibus, i.e. the estimation of the moon elongation at quadrature ${ }^{10}$ (the instant of the first or last quarter), it turns out, to today's technically advanced observations, of $89^{\circ} 51$ 'and not 87°; this difference, less than 3°, involves a considerable underestimation of the earth to sun distance ${ }^{11}$. Howewer we must consider the fact that determining the exact moment in which the moon is at the first or last quarter, to measure its elongation, is not easy without high precision instruments.
But there is another objection that can be raised to Aristarchus: having incorrect in the evaluation of the lunar diameter equal, according to him, to one-fifteenth of a zodiac sign that is 2°. This measure could easily be determined with greater accuracy even with simple technical means (just look at how long the lunar disk passes through a taut wire), so much the same Pappus, in the commentary to the initial hypotheses of Aristarchus, reports that Hipparchus evaluates the width of the moon in about $0^{\circ} 27$ 'and Ptolemy in about $0^{\circ} 31^{\prime}$. It is evident that Aristarchus did not give significant weight to the accuracy of the astronomical measurements indicated by him, since he has the intention to expose a calculation method that could be later used with greater accuracy. Today we would say that he was a theorist and not an experimental one.

Thomas Heath ${ }^{12}$ points out that in the work of Aristarchus important relationships between angles and sides of a triangle are already being indicated; in proposition VII, for example, he determines the approximate value - between $1 / 20$ and $1 / 8$ - of the tan of 3°. The well known trigonometric functions $-\sin \alpha, \cos \alpha, \tan \alpha$ etc - they will be exhibited in later times, but it is during the Hellenism that spherical and flat trigonometry are born with the calculation of the circumference strings as a function of the angles at the center that subtended them. ${ }^{13}$ Aristarchus is mainly known
because he was one of the first supporters of the heliocentric theory opposed to the geocentric theory instead supported by most astronomers of his time and also of the later times; yet in this one work which he has received, he makes no heliocentric hypothesis. We know about this position from other authors and the first to give us this information was Archimedes who writes about it in $\Psi \alpha \mu \mu i \tau \eta \varsigma:$ "He (Aristarchus) in fact supposes that both the fixed stars and the sun itself are motionless, while the earth is carried along a circumference around the sun, which is located at the center of the circular path, and that the same sphere of fixed stars, situated around the same center together with the sun, is so great that the circumference along which he supposes that the earth to moves, is in relation to the distance of the fixed stars as the center of the sphere relative to the surface. But now it is clear that this cannot be, because not having the center of the sphere any dimension cannot be conceived any relationship with the surface of the sphere. We must instead assume that Aristarchus wanted to say this: since we believe that the earth is at the center of the universe, the ratio that the earth will have to what we call the universe is equal to the ratio that the sphere containing the circle, in which he supposes that the earth turns, has to the sphere of the fixed stars. "I ${ }^{14}$

In his short treatise on the distances of the sun and moon there is therefore no trace of this theory that actually appears is not influential for the methodology used by the author to evaluate the distances of the sun and moon from the earth. Thomas L. Heath in his classic book on Aristarchus believes that two reasons may explain the absence of the heliocentric hypothesis in this work: that Aristarchus's acceptance of this hypothesis is subsequent to the writing of the book or that this hypothesis is irrelevant. This second reason seems more consistent because the heliocentric hypothesis is prior to Aristarchus and it is difficult to think that he had not known it or had not yet accepted it at the time of writing of the De Magnitudinibus. Copernicus resumed the heliocentric theory many centuries after Aristarchus, exposing it in a convincing and organic way in the De Revolutionibus Orbium Coelestium Libri VI. In this cosmic system the earth behaves like a planet or like a wandering celestial body. The heliocentric opinion of Aristarchus, in the past
considered a precursor of Copernicus, cannot but remind us of the vexed question if it was the sun to orbit around the earth or the opposite. This has never been the problem such even if it has been described and emphasized as such. Copernicus waited many years before deciding to publish his books. This delay was probably not due to the lack of conviction for his theory rather for the fact that he knew that there would be a strong reaction from conservative circles. In fact Copernicus, in his dedication to Pope Paul III, says: "However, in order that the educated and uneducated people alike may see that I do not run away from the judgement of anybody at all, I have preferred dedicating my carefull studies to Your Holiness rather than to anyone else. For even in this very remote corner of the earth where I live you are considered the highest authority by virtue of the loftiness of your office and your love for all literature and mathematics too. Hence by your prestige and judgement you can easily suppress calumnious attacks although, as the proverb hasit, there is no remedy for a backbiter." When the first edition took place in 1543, Copernicus was dying. A preface was added to his work to reduce the blow he might have had on the dominant opinion; in fact the Copernican script was presented as a pure mathematical hypothesis, thus depriving the so-called real physical meaning. This preface, later authoritatively revealed apocryphal by Kepler, was added by Andreas Hosemann, better known as Osiander, the reformed theologian who was in charge of editing the edition by the aid of Georg Joachim von Lauchen, professor of mathematics, also better known with the Latinized name of Reticus; he was the one who had long urged Copernicus to publish his work. But does it make sense to say that the Copernican theory is only a mathematical hypothesis devoid of real physical content? If we believe that the physical content consists in the descriptive and predictive capacity of events controllable by experience (the classic甲aıvó $\varepsilon \varepsilon v \alpha$ ऽ ς ¢cıv: theories must "safeguard the phenomena", that is, be adherent to observational data, in other words be compatible with experimental observations) ${ }^{15}$ then the Copernican hypothesis is not without it, since the data contained in the De Revolutionibus were used in 1545 for the publication of the Tabulae Prutenicæ; these astronomical tables were used by the commission for the
reform of the Julian calendar commissioned by Pope Gregory XIII in 1582 .
In short, the Copernican theory worked as a practical tool.
The system described by Ptolemy in the Almagest was, among the precopernican cosmologies, the most accredited; it described the movements of celestial bodies taking our earth as a fixed reference for the description of their motion. The fixed stars (stellae inerrantes i.e. those which maintain their relative positions), in this representation, seem to move as if they were pinned on a celestial sphere rotating on its axis and drag this into a daily tour; the sun motion can be described as occurring along a particular circular orbit called the ecliptic and the motion of the planets is described as the result of particular traces called deferents and epicycles.
However, this theory, in the description of the Almagest, proved insufficient to describe planetary motion because it was not consistent with some astronomical observations. Copernicus, in this regard, in the dedication to Paul III states: "So I do not want to hide from Your Holiness thath I was impelled to consider a different system of deducing the motions of the universe's spheres for not other reason that I realize that Mathematicians do not agree among themselves in their investigations". The intuition of Copernicus was therefore to change the usual system of terrestrial reference, that any observer, in solidarity with the earth, assumed automatically and perhaps unconsciously as the only possible, and consider the sun as a new fixed reference, describing in a different way the motion of the planets and the earth compared to the same. It follows that the earth becomes a planet, which is quite acceptable in a scientific reasoning, but evidently difficult for the common sense of the time, almost like the term planet, rather than describing a movement with respect to a reference that is assumed to be immobile, was offensive towards the earth and its inhabitants. In essence, the earth is a planet if we take the sun as a reference for the motion of the celestial bodies, while it is not if we consider it fixed or it is itself the reference of the astral motion. The algorithms that describe the motion of the planets with optimal approximation to the solar reference are elementary functions, while the algorithms that describe the motion of the planets by taking the earth as a reference
are more complex. The theory of Copernicus, which modified the immobile reference and the consequent new description of planetary motions, also contained erroneous assertions, such as the circular pattern of planetary orbits and their uniform motion with respect to the heliocentric reference, but certainly this does not diminish its importance. It was Kepler, after a few decades, to make some changes to the Copernican theory by demonstrating that astronomical measurements on the motion of the planets, in a heliostat reference system, give evidence of non-circular orbits but elliptical, with the sun situated in one of the geometric fires of ellipses, and for the uneven motion of the planets around the sun, ${ }^{16}$ the Copernican theory, rightly called revolutionary because it is the bearer of important developments, has in fact constituted a great advancement in cosmic knowledge overcoming the millennial stalemate. Aristarchus seems to write as if he already intuited the relativism of motion; his propositions are valid both in a heliocentric reference system as in a geocentric one, he is therefore careful not to introduce in his reasoning distortive elements, extraneous to the hypotheses and irrelevant to the propositions to be demonstrated. Newton exposing the regulæ philosophandi in Philosophiæ Naturalis Principia Mathematica - De Mundi Systemate - Book III - will write many centuries later: Rule I: We are to admit no more causes of natural things than such as are both true and sufficient to explain their appearances. To this purpose the philosophers say that Nature does nothing in vain, and is in vain make use more things than will serve; for Nature is pleased with simplicity, and affects not the pomp of superfluous causes. ${ }^{17}$
It is striking in Aristarchus the aptitude for calculation with large numbers using a numbering system certainly less convenient than the current. In proposition XVIII, for example, he calculates that the volume of the earth with respect to the lunar volume is between ratios $\frac{1259712}{79507}$ e $\frac{216000}{6859}$. These numbers appear to us easily understandable because in translations for printed editions are transcribed with the Indo-Arabic numerals, using this notation in our decimal system such ratios, approximate to the third digit, we can simply write 15.844 and 31.491 . The ancient notation is obviously
used in the Greek manuscripts, so these same numbers are written like this: ${ }^{18}$ [$\mathrm{M}^{\rho \kappa \varepsilon}, \theta \psi 1 \beta$]; this reads: $\rho=100, \kappa=20, \varepsilon=5$ while M indicates that each number is multiplied by 10,000 ie $1.000 .000,200.000$, 50.000 seguito da $\theta=9, \psi=700, \mathfrak{l}=10, \beta=2$ ossia in totale $1.000 .000+$ $200.000+50.000+9(000)+700+10+2=1.259 .712$; analogically $\left[\mathrm{M}^{\zeta}, \theta \varphi \zeta\right] \quad \mathrm{M}^{\zeta}=70.000, \quad \theta=9, \quad \varphi=500, \quad \zeta=7 \quad$ ie $70.000+9(000)+500+7=79.507$; the comprehensibility of this notation is obviously less easy.
A. M.

ARISTARCHI
 DE MAGNITVDINIBVS, ET DISTANTIS SOLIS, ETLVNAP, IIBER
 CVM PAPPI ALEXANDRINI explicationibus quibufdam:
 A FEDERICO COMMANDINO
 Vrbinate in latinum conuerfus, ac commentarijs illuftratus.

Cum Priuilegio Pont. Max. In annos X.

PISAVRI, Apwd Camillum Francifcbinum. $\boldsymbol{M} \boldsymbol{D} \boldsymbol{L} \boldsymbol{X} \boldsymbol{X I I}$.

ARISTARCHUS'S BOOK ON THE SIZES AND DISTANCES OF THE SUN AND OF THE MOON

WITH SOME EXPLANATIONS OF PAPPUS ALEXANDRINUS.
IN LATIN TRANSLATED AND
ILLUSTRATED WITH COMMENTARY
FROM FEDERICO COMMANDINO OF URBINO

With privilege granted by PONTI.M.AX. for then years

$\mathcal{P} \operatorname{E} S \mathcal{A} \mathcal{R} O$, by Camilfus \mathcal{F} rancíschinus $\mathcal{M} \mathcal{D} \mathcal{L} \mathcal{X}$ II

Introduction, translation and notes
by Antonio Mancini

Latin text in front

ILI.. AC NOBILISS.

ALDERANOCIBO

MALASPIN A

CARRARI $\not \subset$ MARCHIONI.

O ST Euclidis elementa typis excufa, in quorum quidem editio ne, rogatuiuffús F R $A N C I=$ cipis Illuftrisfimifufcepta, cui ego er otium, t ftudia omnia deuoui mea, industric atque labo= ris plurimum impendi, non inepte me facturum exiftimaui, Clarißime $\subset A L D E R \subset A N E$, fi alium mox libellumplanéaureum, ac vetu:fißimum, à preftantißimóá philofopho cAri= starcho de Soliser Lune magnitudine, ac di= ftantia confcriptum, diuulgandum proponerem. quimibitum ob argumenti preftantiam (t) dignitatem,tum ob $\sqrt{\text { ingularem auctoris folertiam, }}$ ac dininam propé ingen \ddot{y} foclicitatem vifus cft non indignus, qui à tot annorurı fitu, eণ fqualo= re reuiuifcens in doctißimorum hominum, (t) w 2 prefertim

TO THE MOST ILLLISTRIOLS AND NOBILE ALDERAN CIBO MALASPINA MARQLIS OF CARRARA

After the printing of the Euclides Elements, to whose edition i really devoted much effort and carefulness, cared for desire and charge of FRANCESCO MARIA most illustrious prince, sacrificing my free time and my occupation, I trought did not go wrong, clear ALDERANO, with the intention to disclose another small, very precious and ancient book, written by the famous philosopher Aristarchus about magnitudes and distances of the sun and of the moon, which, for the importance and dignity of the subject, and for the singular ability of the author and for the almost divine excellence of his wisdom, I thougth deserved to come to the hands of the men of science, specially mathematicians, reviving from the decay and
prefertion mathematicorum manus perucniret. Werumenimuero male cum ipfo actumeft. vel enım temporum, vel librariorum, reel ambox rum potius iniuria, © infcitia tam mifere la= befactatus, turpiter'́g deformatus fuit, (quod fane malum in omnes paulo vetuftiores libros magno doctorum incommodo ev iactura latius ferpfit) ot mibi nunc, quieiusulcera fanaui, maculasq́ablalerf2, (t) meis in ipf um con/criptis commentarijs exornaui, fudey fortaffe © vivi= gilantia non minus ponendum fucrit in boc oper re, quàm ipfe ab initio pofuerit citrjftarchus. Hunc igitur mea industriain priftimionn nito rem reftitutum, eperpolitum, latinitatéq dos natum, winà cum Pappi ©Alexandrini expli= cationibus quibufdam, fut tui Illuftrißimi nomi nis tutela, (t) patrocinio in lucim prodirevo= lai, tumvtmei perpetuierga te amoris, atque
 ratione, quantite faciam, quantumq́ in priat Stantifima natura, eximioq, ac fingulariongenio confidam ruo; declarare nunc liceat; tum ot tu, qui, fummoloco natus, in magno gereris $=:$
carelessness of so many years. This book was however treated really badly. In fact this book, for the damage of the time or of the copyists, or better of both, as well as for incompetence, has been so miserably damaged and obliviously deformed (this evil indeed spread to a very large extent in all the books that are not very old with great inconvenience and harm to the learned men) thath perhaps, now that I have healed her sores and cleaned her stains and adorned of my commentaries attached to it, I have put, on my side, in this work unlessened study and attention than Aristarchus himself has placed they at the beginning.
So I wanted this book, returned to the original splendor, purified and donated by my work to the Latin language toghether with some explations of Pappus of Alexandria, to be revealed under the protection and patronage of your illustrious name, both for this to be an example of my perpetual affection and respect towards you, so that 1 may now show, without any other interest, how much you I exteem and how much 1 trust in your excellent nature and in your distinguished and singular ingenuity, both so that you, born in very high position, in great splendor of family, surrounded by atavistic glory, wealth, dignity,
fplendore, (t) maiorum gloria, opibus, digni= tate, gratia circumfluens, or virtutum om= nium, atque artium optimarum miro incenfus ardore, in quibus er tuajponte, (t) studio, fin= galariq́ conftantia adeo procesfifti, wt nibilinon amplem, non fummum, non gloriofum de te Perandum $f t$, mathematicas difciplinas, qua= rum te incredibili defederio flagrare noui, bat ra tione habeas quàm commendatisfimas; ormai gnoprafidiotuearis. Infigrem autem, oregre= gixm mathematicum fuiffe Ariftarchum, non foripta cius tantum aperte teftantur, in quibus tamet fit alia methodo, alijsóg paftionibus ni= xus, atque Hipparichus, eq Ptolemaus eadem in re v/i fuerint, fcientiam fempiternorum cor= porum, nobilisfsaam illam quidem, (t) rehe $=$ menter expetendam, longisfime tamenà com= muni bominum enfupofitam, egregie, vt tem= poribus illis, affecutus fuit, eo luculenter expli= cauit ; \int edipfius etiam cArchimedis in libro de Arena numero teffimonium amplisfimum, locupletisfimum. neque enim vir ille Diuinus Arijfarchum tot in locis laudaffet, nif homi= nis
grace, inflamed with admirable ardor for all the viertues and sciences in wich, by your will and commitment and by singular constancy, you are so advanced that we can not hope from you for anything that is not great, supreme, glorious, have for this reason in high regard and protect with great force the mathematical disciplines for wich I know that you burn with incredible passion. That Aristarchus was then a eminent and distinguished mathematician not only is attest by his writings, in which he, throug by another method and based on different hypotheses, understood and explained, very well and widely for those times, the science of eternal bodies, matter in which both Hipparchus and Ptolemy later will be experts, althrough it is very noble and to be sought after strongly yet so far from the common sense of men, but also witness to him in a very relevant and authoritative way the book of Archimedes De Arenae numero. ${ }^{19}$ In fact, that divine man would not have praised Aristarchus in many passages if is doctrine hat not
nis doctrina fibi pectata, probataǵg fuiffet: cAdde quod Sami ortum teftificatur; gua in= fula, vrbsq̧, olim Pythagoramtulerat omnium. Liberalium artium uel repertorem, uelcerte do= Ctorem preftantisfimum, as mathematitis ita deditum, ut, cum in Geometria noui quiddam inueniffet, mufis bouem immolaffe dicatur. Hunc in primis ab eAriftarcho magiftrum fibi lectum credi facile poteft : etenim viri laudis ansantes ciuium fuorum, quorum nomen celebre uident, ueftigis ad gloriam alacrius incedunt. Accipe igitur hoc à me munufculum, or per= frucre, Commasdinitui non immemor, quiunicecolit (t) obferuat. Vale.

Federicus Commandinus.
been known and approwed by himself. Moreover, he testifies that he was born in Samos; which island and city had had in the past Pythagoras, inventor of all liberal arts and also a very capable teacher, he was so devoted to mathematics that it was said that, when he discovered somethings new in Geometry, he would sacrifice an ox to the muses. It is easy to believe that he was chosen especially by Aristarchus as his teacher: in fact men who lowe the praise of their fellow citizen, whose name they see celebrated, are more eagerly moving towards glory. So welcome my little gift and enjoy remembering your Commandino, who honors and respect you in an extraordinary way. You're fine.

Federicus Commandinus

1
 ARISTARCHI
 L I B E R

> DE MAGNITVDINIBVS, ET DISTANTIIS SOLIS, ETLVNAE, $V N A$ CVAM PAPSI ALEXANDRINI.

Et Federici Commandini Commentarïs . POSITIONES.

$V N e A M$ à Sole t lurnen accipere. Terram puncti,ac ${ }^{2}$ centribabererationem ad Sbaram lune. Cum luna dimidia 3 ta nobis apparet, uergere in noltria vifum circulum maximum, qui lune opacü, - β plendidum determinat.

Cum luna dimidiata nobis apparet, tunc 4 cam à fole diftare minus quadrante, quadira tis parte trigefima.

Aristarchus's book on the sizes and distances of the sun and of the moon.

With commentary from Pappus Alexandrinus and from Federico Commandino

HYPOTHESES.

1. The moon receives light from the sun
2. The earth is in the relation of a point and centre to the sphere of the moon ${ }^{20}$.
3. When the moon appears to us halved, the great circle which divides the dark and the bright portions of the moon is in the direction of our eye ${ }^{21}$.
4. When the moon appears to us halved, its distance from the sun is then less than a quadrant by one thirtieth of a quadrant.

ARIST. DE MAGN.

5 rmbrelatitudinem effe duarum lunaru. 6 Lunamfubtendere quintam decimam par temfigni.

Itaque colligitur, Diftantiam folis àterra, maiorem quidem effe, quàm duodeuigintuplata diftatix lune ; minorem vero quàm vigintuplam, ex pofitione, qux eft circa dimidiatam lunam : eteande proportionem habere folis diametrum ad diametrum lunę. Solis autem dianctram ad dametrua tere maiorem quidem preportien on habere, qui 19 ad 3 ; minorem vero quinm 43 ad 6 , ex ratione diftantiarum, \& pofitione circa vibram, \& ex eo quod luna quintam decimam figni fartem fubtendit.

Tappus in fexto libro collcotionum Mathematicarurn.

Ariftarchus, inquit, in libre de magnitudinibus, et diftătüs lis ê luae fex ponit, nëpe bec, Primü, lunam à fole lumen ac cipercofecundum, terran punctiac centri b:bere rationem aif pheram lume. Teitian, cum lana dimidiata nobis apparet, rergere in noftum vifisn circulum maximum, qui lung opacum, é Jplendidum determinat. Oturtum, cum luna dimidiata nobis apparet, tunc ipfam à fo!e dijfare minus qua drante, quadrantis parte trigefima pro eo, quod eft diftare partes octaginta feptem, be enim minores funt, quam nona ginta partes quadi a ì is, partibus tribus, quae fint trigefima pars nonaginta. Quintum, vmbrac latitudinem effe duarum lunarum. Stxtum, lunam fubtendere quintam decimam par tem figni.

5. The breadth of the shadow is that of two moons.

6. The moon subtends one fifteenth part of a sign of the zodiac.

From this it is deduced that the distance of the sun is greater than eighteen times, but the distance of the moon less than twenty times, this follows from the hypothesis about the halved moon, and thath the diameter of the sun has the same ratio to the diameter of the moon. But still we deduce that the diameter of the sun has a ratio with respect to the diameter of the earth certainly greater than 19 to 3 but less than 43 to 6 , because of the relationship of distances, for the hypothesis on the shadow and for the fact that the moon subtends the fifteenth part of a zodiacal sign.

Pappus in the sixth book of Matematicae Collectiones

Aristarchus, in his book on sizes and distances of the moon and of the sun, lays down these six hypothesis:

1. That the moon receives light from the sun
2. That the earth is in the relation of a point and centre to the sphere of the moon
3. That, when the moon appears to us halved, the great circle which divides the dark and the bright portions of the moon is in the direction of our eye.
4. That, when the moon appears to us halved, its distance from the sun is then less than a quadrant minus one thirtieth of a quadrant, i.e. eighty-seven times, these are actually smaller for three parts, compared to ninety parts of a quadrant, which are the thirtieth part of ninety when the moon appears to us halved, its distances from the sun is then less than a quadrant minus one-thirthiet of a quadrant, i.e. eighty-seven times, these are actually smaller for three parts, compared to ninety parts of the a quadrant, which are the thirtieth part of ninety
5. That the breadth of the shadow is of two moons ${ }^{22}$
6. That the moon subtends one fifteenth part of the zodiac.

ET DIST. SOL. ET LVNAE.

Harum autem pofitionum, prima quidem,tertia io quar ta ferè cum Hipparchi é Ptolomei pofitionibus confentiunt; luna cnim if fole femper illuminatur, preterquim in ecclip f_{1} : quo tempore liscis expers fit, incidens in vinbram, quain fol oppofitiss à terra aucit, conicam formam babĕtem, © circulus determinans lacteum, quot eft exilluminatione folis, σ cineritium, qui proprius lune color oft, baud differens a maximo circulo in dimidiatis ad folcm confitutionibus, quam proxime ad quairuntern in zodiaco co:pectum, ad Difuin noftrum versit.boc enim circuli planum, fi produ catur etiom per vifem nofirum trinfibit, quamcumque pojitionem babeat luna prime, pel fccunde dimidiate apparitio nis. reliquas autem pofitiones difcrepantes conperiering dictir wathematici, proptcrea quàd neque scmapuncti, ac centri rationem b.beat ad lune fpherom, fecundun ipfos,
 titudo fit duarum diametrorum lunae : neq:ac ipfous lune diameter fubtcndat circumferentiam maximi circtuli, fècundum medians cius dijfantian, quintam decimam partem figni, videlicet partes duas. Hipparcho eilim diameter lune circulum bunc fexcenties \& quinquagies metitur: ※~ cir culum vombe motitur b:s ت fontis fecundum mediam diftun ziam in coniuntionibus. At Ptoloméo diameter ipfius lisng fecundum maximam quidern dift.ntian fiubtendit circumferentiam 0. 3 1.20. fecunitum minimam vero 0.35.20. Et diamcter circuli vmbre fecundum maximam lunae diftan tiam 0.45.38. fecundum minimam. 0.46. Vnde ipfi differentes rationes tum diftantiarum tum maynitudinum folis $\mathfrak{*}$ lune collegervut. Ariftarchus enim dictus pofitiones $\int e-$ cutus ad verbum itu fcribit.

Itaque colligitur diftantiam folis àterra maio- ", rem quidem effe, quàm duodeuigintuplam diftan- ", tixlunx; minorem vero, quàm vigintuplam $: \&$, $\mathcal{A} 3$ eandem

The first, third, and fourth of these hypothesis agree pretty good with the hypothesis of Hipparcus and Ptolemy; indeed the moon is iffuminated by the sun at afl times except during an eclipse, when it Gecomes devoid of light sinking into the conical shadow that the sun in opposition throws from the earth, and the circle, dividing the milk-white portion, caused by the sun, from ashy portion, wich is the color of the moon, is in the direction of our eye, itself indistinguishable from a great circle observed when moon, in relation to the sun position, appear halved very nearly a quadrant in the zodiac. This plane of the circle, if produced, will in fact pass through our eye in whatever position the moon is when for the first or second time it appears halved. The aforementioned mathematicians, as regard the remaining hypothesis, have taken a different position, since, for according to them, the earth has the relation of a point and centre to the sphere of the fixed stars but neither to the sphere in wich the moon moves, nor the shadows breadth is that of two moons diameters ${ }^{23}$, nor the moon's diameter subtend one fiftheenth part of a sign of the zodiacal circle, at its average distance, that is 2 parts ${ }^{24}$. According to \mathcal{H} ipparcus, the moon's diameter is contained 650 times into this circle and $21 / 2$ times into shadow's circle, at its mean distance in the conjunctions ${ }^{25}$. According to Ptolemy the moon's diameter subtends a circumference of o.31.20, when the moon is at its greatest distance, and 0.35.20 when at its least distance. The diameter of the shadow's circle ${ }^{26} 0.45 .38$ when the moon is at its greatest distance, 0.46 when the moon is at its least distance. Hence themselves calculated different ratios of 6oth the distances and of the sizes of the sun and the moon. Therefore \mathcal{A} ristarchus, stating the aforeside hipotheses, writes word for word:
Now we can prove that the distance of the sun from the earth is greater than 18 times, but less than 20 times, the distance of the moon, and the diameter of the sun has the same ratio to the diameter of the moon: this follows from the hypothesis about the halved moon.

ARIST. DEMAGN.:

eandem proportionem habere folis diametrum ad diametrum lunx . quod habetur ex pofitione, qux eft circa dimidiatam lunam. folis autem diametrú ad diametrí terrę in maiori proportione effe,quàm $19 \mathrm{ad} 3,8$ in minori, quàm 43 ad 6 , ex ratione di ftantiarum, \& pofitione circa vmbram, \& ex eo quòd luna quintamdecimam figni partem fubtendit.

Colligitur inquit, vt deinceps, velut qui hecc paulo pof de monfraturus fit, lemmata ad demonftrutiones vtilia premit tens. Ex quibus omnibus concludit, folem ad terram muiorë quidem proportionem babere, quam 6859 ad 27 ; minorë vero, quim 79507 ad 216. Terrae diametrum ad daametrum lung in maiori proportione effe, quàm 108 ad 43; б minori, quàm 60 ad 19. Terram pero ad lunam in maiori of fe proportione, quain 1259712 ad 79507 ; 氏 minori, quain 216000 ad 6859. At Ptolemeus in quinto libroma gnae conftruftionis demonflrauit quarun partium femidiameter terrae eft unius, earum lunae maximam diftantiam in coniunCtionibus effe 64. 10. ('л Solis 1210 .femidiametrй lumae 0.17.33.'ひ femidiametrum folis 5. 30 . ergo quarum partium diameter lunac eft unius, earum diameter qui dem terrae eft $3 \frac{2}{5}$:folis autem $18 \frac{4}{5}$. terrae igitur diame ter triplay diametri lunae, é adbuc duabus quintis maior. folis dianiteter diametri quidem lunae duodenigintupla eft, $\mathcal{\sigma}$ adbuc maior quattuor quintis : diameter autem terrae quintupla, ér adbuc dimidio maior. Ex quibus é jolidorй corporum proportiones manifeftg fimt. ©uoniam enim cubus vonius eft I , cubus aŭt $3 \frac{2}{5}$ eft earŭute $39 \frac{1}{4}$ pximè; et cubus $18 \frac{-2}{5}$ fimiliter $6644 \frac{1}{2}$ proxime : quarum partiu lunae folida magnitudo eft unius, earum magnitudo terrae crit $39^{-\frac{1}{4}}$; © folis $6644 \frac{1}{2}$. Quare magnitudo folis centies © Septuggies proxime terrae magnitudinem continet.

Again the diameter of the sun is to diameter to the earth in a greater ratio than that wich 19 has to 3 , but in a less ratio than that which 43 has to 6 ; this follows from distances ratio, from the hypothesis about the halved moon and from the hypothesis that the moon subtends one fifteenth part of a zodiacal sign. He sais: "it can be deduced", that does imply that he will to prove these things, after giving the prefiminary lemmas usefull for the proofs. From all these tings he concludes that the sun has to the earth a ratio greater than that which 6859 has to 27 , Gut a ratio greater than that wich 79507 has to 216; that the diameter of the earth is to the diameter of the moon a greater ratio than that which 108 has to 43, but in a Cess than that wich 60 has to 19; that the earth is to the moon in a greater ratio than that wich 1259712 has to 79507, but in a less than that wich 216000 has to 6859 .

But Ptolemy in the fifth book of Magnae Constructiones proved that, hif the half-diameter of the eart is taken as the unit, the greatest distance of the moon at the conjunctionis is 64.10, the greatest distance of the sun 1210, the half-diameter of the moon $0.17 .33^{27}$ and the half-diameter of the sun 5.30^{28}. In consequence, if the half-diameter of the moon is taken as the unit, the earth's diameter is $3+2 / 5$ times, the sun's diameter $18+4 / 5$ times. The eart h 's diameter is is $3+2 / 5$ times the moon's diameter. The sun diameter is $18+4 / 5$ times the moon's diameter and $5+1 / 2$ times the diameter of the eart κ^{29}. From what has been said the ratios between the solids figures are manifest. Since the cube on 1 is 1 , the cube on $3+2 / 5$ is very nearly $39+1 / 4$ and the cube on $18+4 / 5$ very nearly $6644+1 / 2$: is the solid size of the moon is taken as a unit, that of the earth will be $39+1 / 4$ and that of the sun $6644+1 / 2$ of such units. Therefore the solid size of the sun is very nearly 170 times greater than that of the earth. This is what can be said up to now comparing the aforementioned magnitudes and distances.

ET DIST. SOL. ET LVNAE.
o bec barienus dictafint, comparationis caufa diElaturs magnitudinum, ©~ dijfantiarum.

PROTOSITIO. I.

Duas/pharas, aquales quidem idem cyliz drus comprebendit, inaquales vero idem conus, verticem babens adminorem ßherram: © per centrum ipfarum ducia rectali neaperpendicularis est ad vetrumque circulorum, in quibus cylindri, vel conifuperficies /pheras contingit.

Sint xquales fohxre, quarum centra A B:iunEtaq́uc A B producatur: \& peripfam AB produca tur planum, quod facict fecticnes in fpheris mawi- A mos circulos. Itaque faciat circulos CDE FGH : at que à punctis A B ipfi AB linex ad rectos angulos ducãtur CAE FBH: \& CF iungatur. Qupriaigitur CA FB \& x quales funt, \& parallelx, erunt \& C F AB xquales, 8 parallelx;eritque CFAB paralle logrommum : \& anguli quiad CF recti, ergo recta

PROPOSIZION I.

One and the same cylinder comprehend two equal spheres, one and the same cone two unequal spheres wich has his vertex in the direction of the lesser sphere; and the straight-line, drawn through the centres of the spheres, is perpendicular to each of the circles in wich the surface of the cylinder, or of the cone, touches the spheres.

Let there be equal spheres and let the points $\mathrm{A} B$ be their centres. Let A B be joined and produced: let a plane be carried through A B this plane will cut the spheres in great circles ${ }^{\mathrm{A}}$. Let these great circles be CDE and FGH; let be drawn from A B straight-lines CAE \& FBH at right angles to AB^{30}; and let C F be joined. Thence, since $\mathrm{CA} \& \mathrm{FB}$ are equal and parallel, consequently will $\mathrm{CF} \& \mathrm{AB}$ be equal and parallel; $C F A B$ will be a parallelogram: the angles at C \& F will be right ${ }^{\mathrm{B}}$. So the straigt-line CF touches the circles CDE \&

ARIST. DEMAGN.

Inea CF circulos CDE, FGH continget. fi autem AB manente parallelogrammum AF, $\mathrm{KCD}^{\mathrm{K}} \mathrm{CFL}$ femicirculi conuertantur, quoufque rurfus reftituä tur in eûdem locum, à quo moueri cœperunt:femicirculi quidem KCD, GFL ferentur in fphæris,pa-
D rallelogrammum vero AF cylindrum efficiet, cuius bafes erūt circuli circa diametros CE FH,recti exiftētes ad ipfam $A B$: propte rea quòd in omni conuerfione CE FH ad ipfam AB recto permanent. Et perfpi cuum eft fuperficiem ipfius contiugere fphęras, quoniā CF in omni conuerfione fe micirculos KCD GFL con tingit.

Sint rurfus fohxra inxquales, quarū centra AB, \& fit maior, cuius centrum A. Dico diftas fphęras cundem conum comprehendere, qui verticem habeat ad minorem, fphxram. Iungatur AB, \& per ipfam produ
E catur planum, quod faciet fectionesi fphęris circulos. faciat circulos CDE FGH. circulus igitur CDE maior eft circulo FGH . ergo \& quax ex centro circuli CDE maior erit ca, qua ex centro
F circuli FGH. fieri igitur po reft, vt fumatior alignod pun

punctum
$\mathrm{FGH}^{\mathrm{C}}$. If now, AB remaining fixed, the parallelogram AF and the semicircles KCD \& GFL be carried round and again restored to the position from which they started, the semicircles KCD \& GFL will move in coincidence with the spheres, the parallelogram AF will generate a cylinder ${ }^{\mathrm{D}}$, the bases of which be the circles about the diameters $\mathrm{CE} \& \mathrm{FH}$, at right angles to AB , because throughout the whole rotation CE \& FH remain at right angles to AB and it is manifest that the cylinder's surface touches the spheres, since CF throughout the whole rotation touches the semicircles KCD \& GFL. Again, let the spheres be unequal, and let A \& B be their centres, let A the centre of greater sphere. I say that the aforeside spheres are comprehended by one and the same cone which has its vertex in the direction of the lesser sphere. Let A \& B be joined, and let a plane be carried through AB , this plane will cut the spheres in circles ${ }^{\mathrm{E}}$. Let the circles be CDE \& FGH; therefore the circle CDE will be greather than the circle FGH. So that radius of the circle CDE is also greater than the radius of the circle FGH. Now it is possible to take a point, as

ET DIST. SOL. ET LVNAE. 4
punctum, velut K, ita vt quam proportionem habet quę ex centro circuli CDE ad eam, qux ex centro circuli FGH, eandem habeat AK ad KB.fumatur, \& fit K: ducaturq́ue KF tangens circulum FGH: \& FB iungarur.Deinde per A ipfr BF parallela ducatur A C , \& iúgatur C. F . Quoniam igitur eft, vt AK ad KB , ita $A D$ ad $B N$;atque eft $A D$ quidem x qualis ipfi A C; $B N$ vero ipfi $B F$:erit vt $A K$ ad $K B$, ita $A C$ ad B F:eftq́ue AC parallela ipfi BF. recta igitur linea eft CFK. fed angulus KF B rectus eft. ergo \& reitus KC A;ac propterea $K C$ circulum CDE contingit. ducā tur CL EM ad ipfam AM perpendiculares.S igitur manête KX femicirculi XCD GFN, \& triăgula KCL KFM conuertätur, quoufque rurfus reftituantur in eundem locum, à quo moueri ceperunt, femicirculi quidem XCD GFN in fphxris ferentur; triangu1 la vero KCL KFM conos efficient, quorum bafes funt circuli circa diametros CE FH , reçti exiftētes. ad KL axem, \& eorum centra L M. coni uero fphęra rum contingent fuperficies, quoniam \& KFC in om ni conuerfione femicirculos XCD GFN icontingit.

$$
F E D . \quad C O M M A N D I N Y S
$$

Quod faciet fectiones in fpharis maximos circu- A los] Ex primam propofitione ßphericorum Theodofii.

Et anguli qui ad CF recti] Ex34. primi.Eucl.paral B lelogrämorüu enim locorŭ anguli, qui ex oppofito equales sŭt e tsŭt refti quiad \mathcal{A} B anguli. ergo et qui ad C F reCti erŭt.

Ergo recta linea CF circulos CDE FGH contin C get $]$ Ex 16 tertï libri elementorum.

Parallelogrammum vero AF cylindrum efficiet] D Ex 21 diffinitione undecimilibri elementorum.
$\mathrm{K}^{31, \mathrm{~F}}$, such that, as the radius of the circle CDE is to the radius of the circle FGH, so is AK to KB: let the point K be so taken, let KF be drawn tangent the circle FGH and let F\&B joined. Then, through A , let AC be drawn parallel to BF , let $\mathrm{C} \& \mathrm{~F}$ joined. Then since as $A K$ is to $K B$ so is $A D$ to $B N$ and $A D$ is equal to $A C$ and $B N$ to $B F$, therefore, as $A K$ is to $K B$, so $A C$ to $B F$ and $A C$ is parallel indeed to BF. Therefore CFK is a straight-line ${ }^{\mathrm{G}}$, now the angle KFB is right $^{\mathrm{H}}$, therefore the angle KCA is also right $^{\mathrm{K}}$ and consequently KC touches the circle CDE $^{\mathrm{L}}$, let CL \& FM be drawn perpendicular to AM . If now, KX remaining fixed, the semicircles XCD \& GFN and the triangles KCL \& KFM be carried round and again restored to the position from wich they started, the semicircles XCD e GFN will move in coincidence with the spheres, the triangles KCL \& KFM will generate cones ${ }^{\mathrm{M}}$ the bases of wich are the circles about the diameters CE \& FH which are at right angles to KL axis, the centres of which being L \& M and then the cones will touch the spheres along their surfaces, since KFC also touches the semicircles XCD \& GFN throughout the wole rotation.

Federico Commandino

A. Will cut the spheres in great circles: from first proposition of Teodosii Sphaerica.
B. The angles at $\mathrm{C} \& \mathrm{~F}$ will be right to CF : from proposition 34 of first book of Euclid's Elements, in fact the opposite angles of the parallelograms are equal and since those to $A B$ are right, then those to CF are right.
C. So the straight line CF touches the circles CDE \& FGH: from 16° proposition of third book of Elements.
D. The parallelogram AF will generate a cylinder: from 21° definition of eleventh book of Elements.

ARYST. DE MAG.

E Quod faciet fectiones in fphxris circulos]Ex primafphericorum Theodofi.
F Fieri igitur poteft, vt fumatur aliquod pun\&tum, velut K, ita ut H] Illud autem punctum boc modo inuerie mus.Ducatur feorfum ea, quace ex centro circuli maioris C

 quac ex centro minoris circuli : fiatóg 2t DO ad $0 \mathcal{A}$, ita \mathcal{A} B ad aliam, quae fit $B K$. erit enim componendo, vt $D \mathcal{A}$ ad \mathcal{A}, hoc eft ut quae ex centro circuli maioris ad eam qug ex centro minoris, ita $\mathcal{A K}$ ad $K B$.

Recta igitur linea eft CFK] Hoc eff fia puncto C ad K ducatur reCIa linea, tranfibit ea per F. quod nos demonAravimus in corhmentariis in decimam propofitionem libri Archimedis de üs, quae in aqua vebuntur, lemmate primo.
H
Sed angulus KFB rectus eft,] $E x$ I 8 tertij elementorum.
K Ergo \& rectusKCA] Ex 29 primi elementorum.
L. Acpropterea KC circulum CDE contingit] $E x$ 17 tertÿ elementorum.
M Triangula vero KCL KFM conos efficiunt] $E x^{\prime}$ 18 diffinitione 2 ndecimi libri elementorum.

TROTOSITIO. II.

Si ßhara illuminetur à maiori ßpgra, maior eiuspars, quàm fot dimidia fphara, il luminabitur.
E. This plane will cut the spheres in circles: from the first proposition of Teodosii Sphaerica.
F. It is possible to take a point as K: we will find that point this way. Let be draw on the other side the radius of the greater circle

$C D E$ and let $A D$ be said: $A O$ be carried on the same $A D$, equal to the radius of the lesser circle: and as $D O$ be to $O A$ so $A B$ be to other which is BK. Componendo, ${ }^{32}$ as DA is to AO, i.e. as the radius of greater circle is to the radius of lesser circle, so $A K$ will are to $K B$.
G. Therefore CFK is a straight line: i.e. if from point C we draw a straight line to point K, this will carried through F. We have demonstrated this in commentary to tenth proposition of Archimed's book "De ijs quae in aqua vehuntur ${ }^{33 ",}$,first lemma.
H. Now the angle KFB is right: from 18° proposition of third book of Elements.
K. The angle KCA is also right: from 29° proposition of first book of Elements.
L. And consequently KC touches the circle CDE : from 17° proposition of third book of Elements.
M . The triangles KCL \& KFM will generate cones: from 18° definition of eleventh book of Elements.

PROPOSITION II

If a sphere be illuminated by a sphere greater than itself, the illuminated portion of the former sphere will be greater than a hemisphere.

ETDIST. SOL.ETIVNAE. \$

Sphara enim, cuius centrum Bà ma iori fphęra; cuius cé trü A illuminetur. Dico partem fpherre illuminatā, cuitus cē trŭ B dimidia fphxra maiorē effe. Qin enim duas inxquales fphęras idem conus comprehendit, verticé habēs ad minorem fphxr:lm : fit conus fphras comprehiēdēs; \& per axē planum producatur faciet illud fectiones in fphęris quidē circulos, in cono autem triangulum. Itaq; fa ciat in fphxris circu los CDE FGH; \& in cono triägulū CEK. manifeftum eft por-
 tioné fphęrę,quæ eft 2 C FGH circūferentiã, cuius bafis circulus circa dia metrū FH , partē effe illuminatā à portione, qux eft ad circumferentiam CDE, cuius bafis circulus circa diametrū CE, rectus exiftés ad ipfann AB . ctenim F GH circūferêtia à circūferentia CDE illuminatur; quòd extremi radij funt CFEH: atque eft in proportione FGH centrum fuhxrx B. Quare pars fiphe $r e ̨$ illuminata, dimidia fphæra maior crit.
$\boldsymbol{B} \quad \boldsymbol{F} E \mathrm{D}$.

Let a sphere, the center of which is B, be illuminated by a sphere greater than itself the centre of which is A. I say that the illuminated portion of the sphere, the centre of which is B, is greater than a hemisphere. Since two unequal spheres are comprehended by one and the same cone which has its vertex in the direction of the lesser sphere, let the cone comprehending the spheres be and let a plane be carried through the axis, this ${ }^{\mathrm{A}}$ plane will cut the spheres in circles and of course the
 cone in a triangle ${ }^{\mathrm{B}}$ so its will originate in the sphere the circles CDE FGH and in conus the triangle CEK. It is manifest that the portion of the sphere towards the circumference FGH, the base of which is the circle about the diameter FH , is the part illuminated by the portion of the sphere towards the circumference CDE, the base of wich is the circle about the diameter CE and at right angles to the straight line AB , in fact the circumference FGH is illuminated by the circumference CDE since CF \& EH are the extreme rays: and B is the centre of the sfere within the arc FGH. So that the illuminated portion of the sphere is greater than a hemisfere.

FARIST. DEMAGNIT.
FED. COMMANDINVS.
A Faciet illud fectiones in fphæris quidem circulos]Ex I . β pherricorum Theodofii.vt fuperius diEtum eft.

In cono autem triangulumJEx 3 propofitione prinis Libri conicorum Apolloniy.

PROPOSIT1O.III.

In luna minimus circulus determinat opa cum, \& ßlendidum, quando conus folem, - lunam comprehendens ad vifum noftri verticem babeat.

Sit nofter quidem vifus ad A; folis centrum B; CE trum vero lunx, quando conus folem \& lunam cóprehendens ad vifum noftrum verticem habent, fit C:quando autem non habeat fitD . manifentum elit puncta ACB in eadem recta linea effe . producatur per AB \& D planum; quod faciet fectiones in fphe ris quidem circulos; inconis autem rectas lineas.fa ciat etiam in fphxra, per quam fertur centrum luB nx circulum CD . ergo A eft ipfius centrum; hoc enim ponitur. In fole autem faciat circulum EFR:\& in luna quando conus folem, \& lunam comprehen dens ad vifum noftrum verticem habeat, circulum HKL; quando autem non habeat, MNX. At in conis rectas lineas $\mathbb{E} A, A G, F O, O R: \&$ axes AB BO. Quoniam igitur eft,vt qux ex centro circuli EF G ad eam, qux ex centro circuli HKL, ita qux ex cē tro circuli EFG ad eam, quę ex cêtro circuli MNX.
A. This plane will cut the spheres in circles: from 1° book of Teodosii Sphaerica, as it has been said above.
B. And of course the cone in a triangle: from 3° proposition of the first book of Apollonius.

PROPOSITION III

The circle in the moon which divides the dark an the bright portions is least when the cone comprehending both the sun and the moon has its vertex a tour eye.
For let our eye be at A, and let B be the centre of the sun, let C be the centre of the moon when the cone comprehending both the sun and the moon has its vertex at our eye, let D be the centre when this is not the case.It is then manifest that $\mathrm{A}, \mathrm{C}, \mathrm{B}$ are in a straight-line. Let a plane be carried through AB and D , this plane will cut the spheres in circles and the cones in straight-lines ${ }^{\mathrm{A}}$. This plane will produce also, in the sphera on wich the centre of the moon moves, the circle CD, therefore A is the centre of this circle, according to our hypothesis ${ }^{\mathrm{B}}$. This plane will produce on the sun the circle EFR and on the moon the circle HKL, when the cone comprehending both the sun and the moon has its vertex at our eye, and in the circle MNX when this is not the case. This plane will also produce on the cones the straight-lines EA, AG, PO, OR and axes AB, BO. Since, as the radius of the circle EFG is to the radius of the circle HKL, so is the radius of the circle EFG to the radius of the circle $\mathrm{MNX}^{\mathrm{C}}$, but, as the

ETDIST. SOL, ETLVNAE。 σ

Sed vt qux ex centro circuliEFG ad eã, quæ ex cêtro circuli HKL, ita BA ad A C. vtaŭt que ex cētro circu liEFG ad eä, quę excentro circuliMNX, ita $B O$ ad O D.\&vt igitur BA ad AC, ita BOad OD: \& diuidendo vtBCad CA, ita BD adD O: permutan doque vt BC 2 dBD , ita C A ad DO. atque eft $B C$ minor quàm BD: eft enim A ipfius CD circuli cētrú. ergo \& CA minor eft, quàm DO.eft que circulus HKL equalis circulo MNX

$$
8 \text { minor }
$$

D

E
radius of the circle EFG is to the radius of the circle HKL, so is BA to AC^{D}; and as the radius of the circle EFG is to the radius to the circle MNX, so is BO to OD, therefore as BA is to AC so is BO to OD^{E} and, dividendo, as BC is to CA , so is BD to DO and also, permutando, as BC is to BD , so is CA to DO. And BC is less than BD^{F} : for A is the centre of the circle CD , therefore CA i salso less than DO and the circle HKL is equal to the circle MNX

\because A RIST, DESMABN.

- minor igitur eft $H L$,quàm MiX propter lemma. Quare \& circu lus, qui circa diametrú H L defcribi tur, rectus exiftēs ad ipsā A B minor eft circulo de fcripto cir -
- ca diametrú MX, qui reEtus eft ad B O. fed circulus circa diametrum HL, reCtus exi Itens ad AB,
7 eft qui deter minat in luna opacum, \& fplêdidū; quâdo conus folē,\&lunam cöprchēdens ad vifum nofrāverticem habeat. circu lus vero circa diametrú

therefore HL is also less than di MX for the Lemma ${ }^{G}$. Therefore the circle drawn about the diameter HL, at right angles to AB , is also less than the circle drawn about the diameter MX at right angles to OB. But the circle about the diameterHL at right angles to to AB is the circle which divides the dark a nd the bright portions in the moom, when the cone comprehending both the sun and the moon has its vertex ay our eye, instead the circle about the diameter

ET•DIST.SOL: ETLVN•AE..

MX, rectus exiftens ad BO, in luna opacum, \& fplé didum determinat, quando conus folem, \& lunả comprehendens verticem non habeat ad noftrum visú. minor igitur circulus determinat in luna opa cum, \& fplendidum, quando conus folem \& lunam comprehendens ad vifum noftrum verticé habeat.

$$
\text { FED. } \quad C O M M \mathscr{A} N D I N V S
$$

In conis autem rectas lineas] Faciet enim triangula \mathbf{A} Ex 3 -primi libri conicorum Apollonij.

Hoc enim ponitur] Ex pofitione fecunda buius.ponitur enim terram puncti, ac centri babere rationem adjphg B ram lune.

Quouiam igitur eft vt quxe ex centro circuliEF C G ad eam qux ex centro circuli HKL, ita quę ex cētro circuli EFG ad eam, qux ex centro circuli MN $\mathrm{X}_{\text {] }}$ Ex 7 .quinti elemen.eadem ad aequsales eandem babet proportionem.

Sed vt qux ex centro circuli EFG ad eam, qux ex D centro circuli HKL, ita B A ad AC]Iungatur enim CH
 fimiic triangulo $\mathcal{A C H}$.quare vt GB ad BA, ita HC ad C ex 4 . fexti: © permutando vt $G B$ ad $H C$ quae fumt ex cen-
 Strabitur, pt quae ex centro circuli EFG ad eam, quiue ex. centro circuli $M N X$, ita a effe BO ad OD.

Et vt igitur BA ad AC,ita BQad ODJE. 1 I quin E sie elementorum

Atque eft BC minor, quàm BD J Ex 8 tertij ele- F mentorum.

Minor igitur eft \&ivt HL, quàn MX propter lem C ma.jYbi boc lemma jit, nondum comperi, fed tamen illud \Rightarrow idem

MX, at right angles to BO, divides the dark and the bright portions in the moon when the cone comprehending both the sun and the moon has not its vertex a tour eye. Consequently the circle which divides the dark and the bright portions in the moon is less when the cone comprehending both the sun and the moon has its vertex at our eye.

Federico Commandino

A. And the cones in straight-lines: this will indeed generate triangles: from 3° proposition of first book of Apollonius Conics.
B. According to our hypothesis: from second hypothesis of this book, indeed we have supposed that the earth is in the relation of a point and centre to the sphere in wich the moon moves.
C. Since, as the radius of the circle EFG is to the radius of the circle HKL, so is the radius of the circle EFG to the radius of the circle MNX: from 7° proposition of fifth book of Elements: a magnitude compared to equal magnitudes is in the same relationship.
D. As the radius of the circle EFG is to the radius of the circle HKL, so is BA to AC: indeed let be jointed C to H and let be draw through B the straing-line $B G$ parallel to $C H$, the triangle $A B G$ will be similar to the triangle $A C H$. As GB is to BA so HC is to CA for the 4° proposition of sixth book and permutando as GB is to HC, wich are the radii of the circles EFG and HKL, so BA is to $H C$, and similarly it is shown that as the radius of the circle EFG is to the radius of circle $M N X$, so $B O$ is to $O D$.
E . as BA is to AC so is BO to OD : from 11° proposition of fifth book of Elements.
F. And BC is less than BD : from 8° proposition of third book of Elements.
G.therefore HL is also less than di MX for the Lemma: I have never verified where this lemma is stated, but however itself is

ARIST. DEMACN:

idem in 24 propofitione perßpettiug Euclidis demonftraturi: Ononiam enim $\mathcal{A C}$ minor eft, quam $O D$,oculo pofito in Ω mimus de corpore lune cernetur, quàm eo pofito in $0 . e r g o$ in Ctis $H L, M X$, erit HL minor ipfa MX.

TROTOSITIO. IIII.

Circulus in luna opacum, © $/$ Plendidum determinäs non differt à maximo in ipfa cir culo, quatenus ad fenfum attinet.

Sit nofter quidé vifus ad A, lunę vero centrum B; \&iú Cta AB per ipfam planí producatur, quod faciet fectionem in fphęramaximú circulum. faciat circulum ECD F: R in cono rectas lineas AC AD D C. Circulus igitur circa diametrŭ CD rectus exiftês ad ip fam AB, eft qui in luna opací, \& fpen didú determinat. Dico eum non dif. ferre à maximo cir

culo
proved in 24° proposition of Euclid's Optics. Since AC is also less than OD, when our eye is at A, we observed a less portion of the moon than when our eye is at O; also after having joined H to L and M to $X, H L$ will be less than the same $M X$.

PROPOSITION IV

The circle which divides in the moon the dark and the bright portions is not perceptiibly different from a great circle in the same moon.

For let our eye at A and let B the centre of the moon. Let a plane be carried through joined $A B$, this plane will cut the sphere in a great circle ECDF and the cone in the straight-lines $A C, A D$, DC. Then the circle about the diameter CD , at right angles to $A B$, is the circle which divides the dark and the bright portions in the moon. I say that it is not perceptibliìy different from the great circle.

ETDIST, SOL. ETIVNAE.

culo, quatenus ad fenfum attinet.ducatur enim per B ipfi CD parallela EF ; \& ponatur circumferentire DF dimidia vtraque ipfarum GK GH, \& KB BH KA AH BDiungantur. Itaque quoniam pofitum eft lunam fubtendere quintamdecimam partem figni, angulus CAD confiftet in quintadecima figni parte. quinta decima autem figni pars, totius Zodia ci eft pars centefima,\& octogefima.quare CAD an gulus in centefima \& octagefima parte totius Zodiaci confiftet, ideoq́ue erit quattuor rectorū pars cêtcfima \& octogefima; hoc eft quadragefima quin ta pars vnius recti.eftque eius dimidius $B A D$ angu lus.angulus igitur BAD eft dimidij recti pars quadragefima quinta. Et quoniam rectus eft angulus ADB,habebit $B A D$ angulus ad dimidiü recti maiorem proportionem, quàm BD ad DA. quare BD B minor eft, quàm pars quadragefima quinta ipfius DA;ac propterea BG ipfius BA multo minor erit, quàm quadragefima quinta pars.\& diuidendo BG ipfius GA minor,quàm pars quadragefima quarta. D crgo \& BH multo minor ef , quàm pars quadragefima quarta ipfius HA. atque habet BH ad HA ma E iorem proportionem, quam angulus BAH ad AB Hangulum, angulus igitur B AHangali ABH mi- \mathbf{F} nor eft, quàm quadragefima quabta pars. eftque ip Gus quidem BAH duplus angulus KAH; ipfius vero ABH duplus angulus KBH. ergo angulus KAH minor eft, quàm quadragefima quarta pars ipfius KBH. Sed angulus KBH eft xqualis angulo DBF, H hoceft angulo CDB, hoc eft angulo BAD.angulus K igitur KAH anguli BAD minor eft, quä quadragefima quarta pars. At angulus BAD eft quadragefima quinta pars dimidij recti, hoceft vnius recti

For let EF be drawn through B parallel to CD and GH \& GK both be made half of arc DF. Let KB, BH, KA, AH, BD be joined. Then since, by hypothesis, the moon subtends a fifteenth part of a sign (of the zodiac), therefore the angle CAD stands on a fifteenth part of a sign. But a fifteenth part of a sign is a eightieth part of the wohle zodiac, so that the angle CAD stands on a eightieth of the whole zodiac, i.e. $1 / 45^{\text {th }}$ of a right angle, but the angle BAD is his half, therefore the angle BAD is $1 / 45^{\text {th }}$ part of half a right angle and the angle $A D B$ is right, the angle $B A D$ has to half a right angle a ratio grater than that which BD has to DA^{A}, accordingly BD is less than $1 / 45^{\text {th }}$ part of the same $\mathrm{DA}^{\mathrm{B}} ; \mathrm{BG}$ is much less than $1 / 45^{\text {th }}$ part of the same BA^{C} and, dividendo, BG is less than $1 / 44^{\text {th }}$ part of the same GA , consequently BH is also much less than $1 / 44^{\text {th }}$ of the same HA^{D}, and BH has to HA a ratio greater than that which the angle BAH has to the angle $\mathrm{ABH}^{\mathrm{E}}$. Therefore the angle BAH is less than $1 / 44^{\text {th }}$ part of the angle $\mathrm{ABH}^{\mathrm{F}}$, and the angle KAH certainly is double of the angle BAH, but the angle KBH is also double of the angle ABH, consequently the angle KAH is also less than $1 / 44^{\text {th }}$ part of the same angle $\mathrm{KBH}^{\mathrm{G}}$. But the angle KBH is equal to angle $\mathrm{DBF}^{\mathrm{H}}$, that is, to the angle $\mathrm{CDB}^{\mathrm{K}}$, that is to the angle $\mathrm{BAD}^{\mathrm{L}}$. Therefore the angle KAH is less than $1 / 44^{\text {th }}$ part of the angle BAD. But the angle BAD is $1 / 45^{\text {th }}$ of half a right angle, i.e. $1 / 90^{\text {th }}$ part

ARIST. DEMAGEX

pars nonagefima. ergo angulus KA $H_{\text {minor eft, }}$ quàm recti pars 3960 . magnitudo aunt fpe Ctata fub tātulo an gulo insēfilis eft no ftro vifui. atque eft KH circumferẽtia equalis circumferé tię DF.ergo DF no ftro vifui adhuc magis insëflis eft.
M fi enim iungatur A F angulus FAD mi nor crit angulo K AH. quare punctú D videbitur idem effe, quod F: \& fimili ratione C idem videbitur, quod E; ac propterea $C D$, quatenus
 ad fenfum actinet nondiffertabipfaEF . circulus igitur determinans in luna opacum,\& fplēdidum, quatenus ad fenfum attinet à maximo circuio non differt.

- FED. COMMANDINVS.

A Et quoniam rectus eft angulus $A D B$, habebit B $A D$ angulus ad dimidium recti maiorem proportionem, quàm BD ad DA jDefcribatkr feorfivn triangs
of a right angle, accordingly the angle KAH is less than $1 / 3960^{\text {th }}$ part of a right angle, but of course a magnitude seen under such an so little angle is imperceptible to our eye. And the arc KH is equal to the arc DF; therefore DF is completely imperceptible to our eye. In fact, if A \& F^{M} be joined, the angle FAD will be less than the angle, KAH. Therefore the point D will seem to be the same with F. For the same reason C will also seem to be the same with E ; consequently CD is not perceptibly different from the same EF. Therefore the circle which divides
 the dark and the bright portions in the moon is not perceptilly different from a great circle.

Federico Commandino

A. and the angle ADB is right, the angle BAD has to half a right angle a ratio grater than that which BD has to DA: let be drawn in another part the triangle $A B D$ and let part, on the same $D A$,

ETDIST. SOL. ET LVNAE.

 BL iungatur.erunt trianguli BLD, anguli DBL DLEBinter Se aequales. recti dimidius erit.Itaque duo triangula rectangula juint \mathcal{L}

$B D, L B D, q u o r u m$ anguli ad D recti, trianguli vero $\mathcal{A B D}$ latus $B D$ eft commune triangulo $L D B$, \in latus $\mathcal{A B}$ maius latere LB.ergo ex ips, quae nos demonftrauimus in commentarü̈s in librum Arcbimedis de numero arene, angulus ELD ad angulü B.AD maiorë quidem proportionē habet,quàm B \mathcal{A} latus ad latus BL, miniorem vero, quàm latus AD ad latus DL.quare conuertendo ex 26 quinti ielementorum, quä nos addidimus ex Pappo, angulus B $A D$ at angulum BLD, boc eft ad dimidium reCti maiorem proportionem habet, qua latus $D L$, boc eft $B D$ ipfi aeqnale, ad latus $D \mathcal{A}$.

Quare BD minor eft, quàm pars quadragefima quinta ipfius $Đ$ A] Sit enim, νt angulus $B \mathcal{A} D$ ad dimidiüs : recti, itta quępiä rectat linea, in qua M adipfam $D \mathcal{A}$, erit M quadragefima quinta pars ipfıus' $D \mathcal{A}$, © babebit ad D \mathcal{A} maiorem proportionem, quam BD ad DA. ergo BD minor ro.quief,quàm M;ac propterea minor, quàmpars quadragefima ti. quinta ipfius $D \mathcal{A}$.

Acpropterea BG ipfius BA multo minor erit, quàm quadragefima quinta pars] 5 It enim $B G$ aequaC
 fubtendatur.

Ergo BH multo mitior eft; quàm pars quadra- D
$D L$ equal to $D B$ and let be joined B \& L; the angles $D B L$ and $D L B$ of triangle $B L D$ will be equal to each other and since the angle D

is right, both of them will be half right angle and so $A B D \& L B D$ are two triangles at right angles in D; then the side $B D$ of triangle $A B D$ is common to the triangle $L D B$, and the side $A B$ is greater than the side $L B$, so, for what we have shown in the commentaries to the Archimedes book Sand Reckoner, the angle $B L D$ has to the angle BAD a ratio certainly grater than that wich the side $B A$ has to the side $B L$, however a ratio less than that wich the side $A D$ to the side $D L$. Therefore, invertendo, from 26° proposition of fifth book of Elements, that we have added from Pappus, the angle BAD has a ratio to the angle BLD, that is half right angle, greater than that the side $D L$, equal to $B D$, to $D A .^{7}$ prop. of fifth b.
B. Accordingly BD is less than $1 / 45^{\text {th }}$ part of the same DA: indeed, as the angle on $B A D$ is to half right angle, so will be a some straightline, in wich M will be $1 / 45^{\text {th }} D A$, to same $D A$, and will have a ratio to $D A$ grater than $B D$ to $D A$. Then $B D^{10^{\circ} \text { prop. of fith } b}$ is less than M and therefore less than 1/45 part of the same $D A$
C. BG is much less than $1 / 45^{\text {th }}$ part of the same BA : Indeed $B G$ is equal to $B D$, and $B A$ is greater than $A D$, considering that $B A$ is subtended by a greater angle.
D. Consequently BH is also much less than $1 / 44^{\text {th }}$ of the same HA:
r ATIST:DE:MAGNTT.
gefima quarta ipfius HA:] Nam BH eft aequalis ipfis
G; H \mathcal{A} vero maior, quàm $G \mathcal{A}$, ex 8 tertü elemen.
E Atque habet BH ad HA maiorem proportioné, .quàm angulus BAH ad ABH angulum] Defcriba-

tur circa triangulum $\mathcal{A B H}$ circulus $\mathcal{A H B}$, babebit recta $l i$ nea $\mathcal{A H}$ ad rectam $H B$ winorem proportionem, quàm circumferentia $\mathcal{A H}$ ad $H B$ circusnferentiam, ex demonftratis
Vlusex à Ptolemeo in principio magne conftructionis. vt autem cir i. cumferentia $\mathcal{A} H$ ad circumferentiă $H E$, ita angulus $\mathcal{A} E F$ n.qui- ad BAH angulum. recta igitur linea AH ad rectam HB mi at. norem babet proportionern, quim angulus ABH ad angilis BAH.quare conuertendס ex 26 quinti, rella linea BH ad reClă $\mathrm{H} \mathcal{A}$ maiorem proportionem babebit, quad angulns B $\mathcal{A H}$ ad $\mathcal{A B H}$ angulum.
F Angulus igitur B AH anguli ABH minoneft; quàm quadragefima quarta pars $]$ Immo vero multo minor.
Ergo angulus KAH minor eft,quàm quadragefi ma quarta pars ipfius KBH$] E x$ is quinti.elemen.
H Sed angulus KBH eft xqualis angulo DBF I Ita enimponitur.
K Hoc eft angulo CDB]Ex 29 primi elementorum.
1 Hoc eft angulo BAD]Ex 8 fext elementorum.
M Si enim iungatur BF, angulus FAD minor ferit ahguloKAH]

PAPPVSINEODEMLOCO.
Defcribemus autem pmupalemmq ex $\ddot{y} s$, quae tradunitur.
indeed $B H$ is equal to $B G$; then $H A$ is greather than $G A$ from 8° proposition of tirth book of Elements.
E. BH has to HA a ratio greater than that which the angle BAH has to the angle ABH: We drawn the circle

$A H B$ around the triangle $A B H$, the straight-line $A H$ will have to the straiht-line $H B$ a ratio less than the circle $A H$ to the circle $H B$, has Ptolemy proved at the beginning of Liber Magnce Costructionis. As then the arc $A H$ is to the arc $H B$, so theangle ABH is to the angle BAH ${ }^{\text {last of } 6^{\circ} \mathrm{b}}$. The straight-line AH has to the straight-line HB a ratio less, than that wich has to the angle $A B H$ to the angle $B A H^{31}$ of $5^{\circ} \mathrm{b}$. Consequently, convertendo, in according to proposition 26 of fifth book, the straight-line BH has a ratio to the straight-line HA less than that wich the angle BAH has to angle ABH.
F. Therefore the angle BAH is less than $1 / 44^{\text {th }}$ part of the angle $A B H$: certainly minovery less.
G. Consequently the angle KAH is also less than $1 / 44^{\text {th }}$ part of the same angle KBH : from 15° proposition offifth book of Elements.
H. But the angle KBH is equal to angle DBF: so in fact by hypothesis.
K. That is, to the angle CDB: from 29° proposition of first book of Elements.
L. that is to the angle BAD: from 8° proposition of sixth book of Elements. If we join A^{34} with F , the angle FAD will be less than the angle KAH.

Pappus in the same place

We now describe a lemma of those mentioned

ETDIST. SOL. ETHVNE

|n quartum tbeorema ciufdem libri,inquijatione digutemo.

Sit circulus ABC, cuius diameter producta AC D; centrum E:\& à puncto E ipfi $A C D$ ad rectos an gulos ducatur BEF : ab ipfo autem D dncatur DH, circulum ABC contingens : \& dimidix ipfius FH xqualis ponatur ad vtrafque partes C, videlicet K C CL:lunganturq́ue AD DL FD.Dico angulum KDL angulo FDH maiorem effe . Prgmittuntur autem bęc.

Sir circulus ABC, cuius diameter producta AC $\boldsymbol{D}: \&$ à puncto D ducatur quapiam recta linea $D E$ F. Dico circumferentiam AF circumferentia CE maiorem effe.

Sumatur enim circuli centum $G: \mathcal{O} G F$ GE iungancur. erut angulus ad F angulo ad E equalis. Et quoniam trians ${ }^{\prime}$ lim eft GFD, δ angulus exferior AGF maior ef interior:,

by fourth theorem, worthy of being examined, of the same book,

For let be described the circle ABC , let produced its diameter ACD ; let E be its center, and let be drawn BEF from point E at right angles to ACD ; let be produce from D DH what touches the circle ABC , and an arc equal to FH is located on either side of C , that are KC e CL and let be joined A \& D, D \& L, F \& D. I say that the angle KDL is greather than the angle FDH.
Let say before this.
Let be drawn the circle ABC whose produced diameter is ACD; from point D let be drawn any right-line DEF. I say that the arc AF is greater than arc CE.
Indeed let assume the center of the circle G : let be joined also G $\& F$ and $G \& E$. The angle to F will be equal angole in E^{50} Prop. of first ${ }^{b}$. Since GFD is a triangle, then the exterior angle AGF is greather than he interior and also opposite which is in F; i.e. at E; but The angle in E is greater

ARIST. DEMACN.

tem ad E maior eft angulo DGE, propterea quod eft extra triangulum : crit angulus $A G F$ angulo EGD maior. of funt ad centrum.circumferêtia igitur $\mathfrak{A F}$ maior eft circumferйsia CE.quod demöftrare oportebat.

Sit circulus \AA B, cuius centrum D; \& extra circufum punctum Ciducanturǵ; $C D K, \&$ circulum con tin-

than the angle GDE, since the same is exterior to the triangle: the angle $A G F$ will be greater than the angle $E G D$. But these angle are also central angles. The arc $A F$ is then greather than arc $C E$, as it was necessary to demonstrate.

Let be take into consideration the circle AB with center in D and let be C a point esterior to the circle and let be drawn CDK and also CF what touches

tingens CF.deinde per D centrum ad rectos angulos ipfi KL diametro agatur DA; feceturq́ue AF cir cumferentia bifariam in puncto E. \& CBA CGE iungantur. Dico angulum ACE angalo ECF maiorem effe.

Iungantur enim EB FG. ©r quoniam EB maior eft, quă FG, ©o BC minor,quim CG;babebit EB ad BC maiorë pro- 8 quin portionert, quim $F G$ ad $G C$. Itaque fiat vt $E B$ ad $B C$, ita H ti G ad $G C$, \&r HC iungatur. Quoniam igitur anguli $\mathcal{A} B E$ EG 2r. terF inter Se aequales funt, quod © co circumferentia $\mathcal{A} E$ circüferentic EF; ${ }^{\circ}$ reliqui anguli EBC FGC aequales; © cir- ${ }^{13}$. prica aequales angulos latera funt proportionalia: erit triăgn'й ${ }_{6 . \operatorname{sexic}}$ EBC triăgulo HGC equiăgulü.ergo anguli ACE ECH iter fe equales funt. angulus igitur ACE angulo ECF eft maior.

Sit deniq; eadem figura, quę prius; \& eadem maneant.Dico angulū KDL angulo FDH maioré effe.

Secetur circumferentia FH bifariam in puncto M, đo iun gatur MD.confat igitur ex eo, quod proxime ofenfiom eft, angulum FDM maiorem effe angulo MDH . producantur F
 ND. iungentur.Itaque quoniam circulus eft ABC, cuius diameter producta $\mathcal{A C D}$, đお a puncto D acta eft $D L X$ ad concauam circumfereutiam; erit circionférétia $\mathcal{A} X$ maior, quă circumferétia CL. Sed CL eft aequalis $F M$; ptraque enim eft circumferentiae EH dimidia. circumferentia igtur. $1 \times$ maior eft, quam $F M$. ponatur ipfi $F M$ aequalis cirumferentia 10;iunganturq́á $\mathcal{1 O}$ OD. Et quoniam cirumferentia AF C Semicirculi eequalis eft circumferentiae femicirculi FCB, quarum 10 eft aequalis MF; erit © reliqua OC reliquae MB aequalis. sed circumferentiae quidem OC infiftit $D \mathcal{A} O$ angulus; circumferentiae vero $M \mathcal{B}$ infifit angulus NFM - ergo angulus $D \mathcal{A} O$ eft aequalis angu39. hulo NFM - atque eft vterque corum recto minor. ©o cmm

2 3. craAD
the circle. After let be drawn DA through the center D, at right angles to same diameter KL, and let the arc AF be cut in two parts in point E. Let be also joined CBA \& CGE.

I say that angles ACE is greater than the angle ECF.
Let be joined indeed $E B \& F G$ and since $E B$ is greater than $F G$, and $B C$ is less than $C G, E B$ will have a ratio to $B C$ greater than tath
 of tirth b. Let be joined also $H \& C$. Therefore so the angles $A B E$ and $E G F$ are equal to each other, since the arc $A E$ is equal to arc $E F^{13^{\circ}}$ prop. offirst b, , also the remaining angles $E B C$ and $F G C$ are equals, also the correspondent sides to equal angles are proportional, the triangle EBC will be equiangular with the triangle $H G C$. ${ }^{6^{\circ} \text { prop. del sesto }}$ Therefore the angles $A C E$ and ECH are equal to each other. The angle $A C E$ is consequently greater than the angle ECF.
We considered at last the same foregoing image, unchanged. I say that the angle KDL is greater than angle FDH.
We cut the arc FH in two parts at point M and we joint $M \& D$. He is evidently, for what it has been shown just now, that the angle FDM is greather than the angle MDH. Let be produce FEB and DL at points N and X, and let NF be equal indeed to $A D$, let be joined also $N \& M$ and $N \& D$. Therefore since $A B C$ is the circle, of which the ACD diameter has been produced and DLX has been drawn from point D towards the circle concavity, ${ }^{39^{\circ} ~ p r o p . ~ o f ~ t h i s ~ t h e ~ a r c ~} A X$ will be greater maggiore than arc CL; but CL is equal to FM, both in fact are half arc FH; therefore the arc $A X$ is greater than $F M$. Let the arc $A O$ indeed be equal to $M F$ and let be joined $A \& O$ and $O \& D$; since the semicircleAFC is equal to the semicircle FCB, of wich $A O$ is equal to MF, also the remaining OC will be equal to remaining MB, but the angle DAO howevwr insist in the arc OC, as also the angle NFM insist in the arc MB ${ }^{27^{\circ}}$ prop.of tirth b. , then the angle DAO is equal to the angle $N F M,{ }^{31^{\circ}}$ prop. of tirth b but both are less than a right angle retto, and since

ARIST. DEMAGKI

AD fit aequalis $F N$, bo Do ipfi $F M$, duace $D \mathcal{A} \mathcal{A}$ duabus NF FM aëquales funt; dr angulus D 10 eft aequa
4. pri- lis angulo NFM:quare © Gafis OD bafi N:M, \& 6 reliqui an guli reliquis angulis fint aequales a angulus igitur 1 ADO off aequalis angulo $F N M$. Rurfus quenià femicirculi circtrfépé tia eft $F \mathcal{A}$, erit $F \mathcal{A} B G$ femicirculo maior, cui inffitit:ang
a. un- lus FMG. ergo FMG maior eft reCto; © i ipft fuberditur re-
sii. Eta linea FR. angulo aŭt acuto RFM fibtéditur. RM. quare FR maior eff, quam RM. Itaque producatur RM:id S;é 虭
 ef toti $F B N$, quarum $\mathcal{A E}$ ef aequalis EF,trit reliqua $E B$'s. pri- ipfi $E N$ aequalis:ideoóg angulus $E D N$ eft aequalis angulo E .mi. ND; © ADN maior angulo DNR.quare latus NR laterek D of maius.producatur $R D$ ad. 1 : pomatur名ifi NR.aequa lis

$A D$ is equal to $F N$, and $A O^{35}$ is indeed equal to $F M$, both $D A$ and $A O$ are equal to both NF and FM, and the angle DAO is equal to the angle NFM, consequently both the base $O D$ is equal to the base NM, and the remaining angles are equal to the remaining angles, then the angle $A D O$ is equal to the angle FNM.
Again since $F A B$ is a arc of semicircle, $F A B G$ will be greater than the semicircle, on wich stands the angle FMG, then FMG is greater than a right angle, ${ }^{3{ }^{\circ} p r o p . ~ o f ~ t i r t h ~ b . ~ b u t ~ t h e ~ r i g h t-l i n e ~} F R$ subtend the same angle, while $R M$ subtend the acute angle RFM, therefore FR is greater than RM. ${ }^{19^{\circ}}$ prop. of first b. Then let be produce RM to S, and let be RS just equal to $F R$. Since the whole $A C D$ is equal to wole $F B N$, of wich $A E$ is equal to $E F$, the remaining $E D$ will be equal just to EN; ${ }^{5^{\circ} p r o p . ~ o f ~ f i r t s ~ b . ~ t h e r e f o r e ~ t h e ~ a n g l e ~ E D N ~ i s ~ e q u a l ~ t o ~ t h e ~ a n g l e ~}$ $E N D$ and $A D N$ is greater than the angle DNR; therefore the side $N R$ is greater than the side $R D$; let be produce $R D$ to Y and suppose $R Y$ equal just to $N R$ and let joined $S \& Y$.

ETDIST. SOLL. ETLVNEA. 12

 O NR ipf $R T$; due $F R R N$ duabus $S R$ RY aequales fint:
 cem - ergo eor bafis NF.bafi Sr; ; zer relıqui anguli, relquing angulis aeqtiales.quare àvigulis $R F \dot{N}$ eft aequalis angulo $R t$ mi. SY.fed angulus RMD maior eft angulo RSY, cum fit extra triangulum.angulus igitur RMD angulo RFN ef maior .eft auten of FRN angulus aequalis angulo MRD. quare © reliquis FNR maior reliquo RDM. Att oftenfim eft angulum $F N R$ angulo $A D O$ effe aequalem . angulus igitur $\mathcal{A D}$ O angulo RDM eft maior; ac propterea 1DX angulus multo ma:or eft angulo RDM.anguli aut em $\mathcal{A D X}$ duplus eft an gulus KDL: et anguli RDM minor, quàm duplus oftenfus eft a. guius FDH. ergo KDL angulus angulo FDH naior erit.

PROTOSITIO. F.

Cum luna disnidiata nobis apparet, tune maximus circulus,qui eft iuxta determinantem in luna opacum, or plendidum, in viJum nostrum vergit: boc eft maximu's circulus, qui eft iuxta determinantem, er noster vifus in vno funt plano.

Luna enim dimidiata exiftente, apparet circulus determinans opacum, felendidum ipfius, vorgefin in infrum vifum $\ddagger \&$ ab eo non differt cịrculus maximus, qui eft iuxta determinantem.cum igitur Iuna dimidiata nobis apparet, tunc circulus maximus, qui eft iuxta determinätem, in vifuin noftrum vergit

Since then $F R$ is equal to $R S$, and $N R$ is equal just to $R Y$, both $F R$ ed $R N$ are equal to the two $S R$ and $R Y$, and the angle $F R N$ is equal to the angle $S R Y$ because are at the vertex, then also the base NF is equal to the base $S Y$, and the remaining angles are equal to the remaining angles, ${ }^{40}$ p rop. of first b. therefore the angle RFN is equal to the angle RSY, but the angle RMD is greater than the angle RSY, because is exterior to triangle, then the angle RMD is greater than the angle RFN, and also the angle FRN is equal to the angle MRD, consequently the remaining $F N R$ is greater than the remaining RDM.
Moreover it was proved that the angle $F N R$ is equal to the angle $A D O$, then the angle $A D O$ is greater than the angle $R D M$, therefore the angle $A D X$ is greater than the angle RDM, the angle KDL is also twice the angle $A D X$ and we have shown that the angle FDH is less than twice of the angle RDM; therefore the angle $K D L$ will be greater to the angle $F D H$.

PROPOSITION V

When the moon appears to us halved, the great circle, wich is very near the circle which divides the dark and the bright portions in the moon, is then in the direction of our eye; that is to say, the great circle, what is very near the dividing circle, and our eye are in one plane.

When the moon is halved, the circle which divides the bright and the dark portions of the moon is in the direction of our eye $;^{3^{3}}$ hypotesis but the great circle is indistinguishable from that, ${ }^{4{ }^{\circ} \text { hypothesis }}$ what is very near the dividing circle, therefore, when the moon appears us halved, the great circle very near to the dividing circle is then in the direction of our eye.

ARIST. DEMAC.
 TROTOSITIO.VI.
 Luna infra folemfertur, et dimidiata exi fens à ole minus quadrante diftat.

Sit enim nofter vifus ad A, folis autem centrum B: ※ iuncta AB, per ipfam, \& per centrum lunx di midiatx exiftentis planum producatur. faciet vtiq; fectionem in (phara, per quam fertur centrum folis circulum maximum. faciat circulum CRD: \& ̀̀ púcto A ipfi $A B$ ad rectos angulos ducatur CAD .

PROPOSITION VI

The moon moves lower ${ }^{36}$ than the sun, and, when it is halved, is distant less than the quadrant from the sun.

Let our eye be at A, and let B be the centre of the sunA; let $A \& B$ joined and let a plane be carried through right-line $A B$ and the centre of the halved moon. This plane certainly will cut in a great circle the sphere on which the centre of the sun moves: let the circle CBD be done; and from point A let CAD be drawn at right angles to same AB,

ET,DIST. BQL, RTELUNAE, 19

quadrātis igitur eft circumferentia BD, Dicoluna infra folem ferri, \& cum dimidiata exiftat, minus quadräte à fole diftare:hoc eft centrum ipfius intra retas lineas BA AD, \& circumferentiam DEB có tineri. Si enim noy, fit centrumipfius F intra reftas lineas DA AL, \& BF inngatur, erit BF axis coni folem, \& lunam comprahendentis : atque erit perpendicularis ad maximum circulū, qui in luna opa cum, \& fplendidum determinat. Sit igitur maximus circulus in luna iuxta determinärem opacum \& fplendidum G HK. Et quoniam luna dimidiata exiftente maximus circulus, iuxta determinantem in luna opacum \& fplendidum, \& nofter vifus funt in vno plano, iungatur AF. ergo AF eft in plano cir culi KGH : eft autem \& BF circulo K G H ad rectos angulos: quare \& ipfi AF , ac propterea angulus BF A rectus eft. Sed \& obtufus eft angulus BAF. quod D fieri non poteft . non igitur punctum F eft in loco intra angulum DAL contento. Dico neque effe in ip $\left\{\begin{array}{l}\text { AD. Sl enim ficri poteft, fit } \mathrm{M}: ~ \& ~ r u r f u s ~ B M ~ i u ́ ~\end{array}\right.$ gatur: fitq́; maximus circulus iuxta determinanté, cuius centum M. Eadem ratione oftendetur angulus BMA rectus effe ad maximum circulum. fed \& BAM eft rectus . quod fieri non poteft . non igitur in ipfa AD eft centrum lunx dimidiatę exiftentis. ergoerit intra rectas lineas BA AD, Dico praterea effe intra circumferentiam B E D. Nam fi fieri poteft, fit extra in puncto N; \& eadem conftruantur.oftendemús angulum BNA rectum effe. maior igitur eft BA , quàm AN. fed BA cft xqualis AE. ergo \&\& $A E$, quàm AN maior erit. quod fieri nô po teft . non igitur centrum lunę dimidiatę exiftentis eft extra circumferētiam BED.fimiliter oftende

Then the arc BD is that of a quadrant. I say that the moon moves lower than the sun, and, when halved is distant less than a quadrant from the sun: that is to say is center is contaibed between the straight-lines BA, AD and the arc DEB. Let us suppose that it is not, let its centre of the same F between the straight-lines DA \& AL and let also B \& F be joined, then will BF be the axis of the cone which comprehends both the sun and the moon and will be at right angles to the great circle which divides the dark and the bright portions in the moon ${ }^{\text {A }}$. Indeed let be GHK the great circle which divides the dark and the bright portions in the moon. Then since, when the moon is halved, the great circle, just by the circle which divide the dark and the bright portions in the moon, and our eye are in one plane ${ }^{\text {B }}$, let A\&F be joined. Therefore AF is in the plane of the circle KGH ; but then also BF is at right angles to the circle KGH , therefore also to AF , and for this reason the angle BFA is right, ${ }^{\mathrm{C}}$ but the angle BAF is obtuse ${ }^{\mathrm{D}}$, which is impossible. Therefore the point F is contained in the space into the angle DAL. I say that is it not even on the same AD. In fact we suppose it be point M: and again let B\&M be joined; and let the great circle be just by to the dividing circle, its centre being M. Then, whith the same reasoning, it can be shown that the angle BMA is right to the great circle, but the angle BAM is right, which is impossible. Therefore the centre of the moon, when halved, is not on AD , therefore it is between the right lines BA and AD . Moreover I say that is also within the arc BED: let us suppose in fact that it be, outside, at point N , and let the same constructions be made, we can proved that the angle BNA is right, therefore BA is greater than AN: which is impossible. Therefore the centre of the moon, when halved, is not outside the arc BED. Similary it can be proved that neither it placed

* ARISTMEMAG:

tur neque effe in ipfa BED circumperentia. ergo ih tra ipfam fit necefle eft. Juna igitur infra folem fertur, \& dimidiata exiftens minus quadrante à fole diftat

FED. COMMANDINVs.

A. Erit BF axis coni folem, \& lunam comprehend et tis: atque erit perpendicularis ad maximum circuIum, qui in Iuna opacum, \& fplendidum determinat] Ex demonflratis in tertia propofitione buius.
B Et quoniam Iuna dimidiata exiftente maximu's crculus iaxta determinantem in luna opacum $\&$ fplendidum, \& nofter vifus in vno funt planó $\mathbb{E x}$ antecedente.
C Qiare \& ipfi AF, ac propterea angulus FBA reCtus eft]Ex tertia diffinitione pondecimi elementoram.

Sed \& obtifus eft angulus BAF. quod fieri non poteft] Effent enim trianguli $\mathcal{A} B F$ tres angulimaiores duobus rettis.

```
PROPOSITIOVII.
```

Diftantia, qua fol à terra diftat, diftantig qua luna diftat à terra maior quidem eSt; quàm duodeuigintupla, minor uero, quàm pigintupla.

Sit folis quidem centrum A; terræ vero centrum B. \& iuncta $A B$ producatur. Iunx autem dimidiata exiftentis centrum fit $C: \&$ per $A B, \& C$ planũ producatur, quod faciat fectionem in fphxra, per quam
on the arc BED itself, therefore it needs be within itself, The moon moves lower than the sun, and, when it is halved, is distant less than the quadrant from the sun.

Federico Commandino

A. BF be the axis of the cone which comprehends both the sun and the moon and will be at right angles to the great circle which divides the dark and the bright portions in the moon: from the demonstration contained in tirth proposition of this book.
B. Since, when the moon is halved, the great circle, just by the circle which divide the dark and the bright portions in the moon, and our eye are in one plane: from antecedent.
C. For this reason the angle BFA is right: from tirth definition of eleventh book of Elements.
D. But the angle BAF is obtuse: indeed the three angles of triangle ABF would be greater tha two right angles.

PROPOSITION VII

The distance that separates the sun from the earth is greater than eighteen times, but less than twenty times, the distance of the moon from the earth. ${ }^{37}$
Let A be the centre of the sun, whilst B that of the earth B, let A\& B be joined and produced; let C be the centre of the moon when halved, let a plane be carried through AB and C which cut the sphere and let be the great circle ADE thath on which the centre of the sun moves, and let $\mathrm{A} \& \mathrm{C}$ and $\mathrm{C} \& \mathrm{~B}$ be joined and let BC be produced to D.

The angle ACB will be certainly right, because the point C is the centre of the moon when halved; let BE be drawn from B at right angles to BA itself, then the arc ED will be one-thirtieth part of arc EDA $^{\mathrm{A}}$; indeed, by hypothesis, when the moon appears to us halved, its distance from the sun is less than a quadrant by one-thirtieth of a quadrant, therefore the angle BC is also one-thirtieth part of a right angle. Let the parallelogram AE be completed and let $\mathrm{B} \& \mathrm{~F}$ be joined ${ }^{\mathrm{B}}$, the angle FBE will be half a right angle. Let the angle FBE

tur FBE bifariamrecta linea BG.angulus igitur © BE eft quarta pars vnius reiti.fed DEE angulus ef pnius rectipars trigefima. ergo proportio anguli GBE ad angulum DBE eft ea, quam habet is ad 3.quarum enim partium angulus rectus eft 60, carum angulus quidem GBE eft 15 ; angulus vero \mathbf{B}
C BE_{2}. Et quoniam GE ad EH maiorem proportiotionem habet, quàm angulus GBE ad DBE angulum; habebit CE adEH maiorem proportionem, quàm 15 ad z.eft autem BE equalis EF: atque eft angulus quiad E rectus quadratum igitur ex F Bdu-

be bisected by the straight line BG, then the angle GBE is one fourth part of a right angle, but DBE is also one thirtieth part of a right angle, therefore the ratio of the angle GBE to the angle DBE is that which 15 has to 2 ; if we divided a right angle into 60 equal parts then the angle GBE is made up of 15 of those parts, while the angle DBE of 2. Since GE has to EH a ratio greater than that which the angle GBE has to the angle $\mathrm{DBE}^{\mathrm{C}}$, therefore GE will have to EH a ratio greater than that which 15 has to 2 ; but since BE is also equal to EF , at the angle at E is right, therefore the square on FB is double

ETEDIST. SOL. ET LVNAE IS

B duplŭ eft quadrati ex BE . vt aŭt quadratŭ ex FB ad quadratü ex BE, ita quadratú ex FG ad quadratũ exGE.ergo quadratî́ exFG quadrati exGE du plū erit. fed 49 minora funt quã dupla 25 -quadratü igitur ex FG ad quadratum ex GE maiorem proportionem habet, quàm 49 ad $25 . a \mathrm{c}$ propterea ipfa FG ad GE maiorem habet proportionem, quàm 7 ad $5: \&$ componédo FE adEG maiorem, quàm 12 ad $5: h o c e f t, q u a ̀ m ~ 36 ~ a d ~ 15 . ~ o f t e n f u m ~ a u t e m ~ e f t ~ \& ~$ GE adEH maiorem proportionem habere, quàm 15 ad 2.ergo ex æquali FE ad EH maiorem habebit proporrionem, quàm 36 ad 2 , hoc eft quàm 18 ad I.\& ob id FE maior eft, quàm duodeuigintuqla ipfiusEH.eft autem FE xqualis EB. ergo \& BE ipfius EH maior eft, quàm duodeuigintupla. multo igitur maior erit BH , quàm duodeuigintupla ipfius HE.fed vt BH ad HE, itz eft AB ad BC obfimilitudinem triangulorum. ergo \& $A B$ ipfius $B C$ maior eft, quàm duodeuigintupla:eftque $A B$ quidem diftantia, qua fol à terra diftat: CB vero diftätia qua Iuna diftat à terra:diftantia igitur qua fol à terra di ftat, diftantix qua luna diftařà terra maior eft, quā duoderigintupla. Dico erians minorens effe, quàm vigiotaplam.Ducatay enim per D IpfiEs parahes \& DKK sinca DKH triangalume circulas defcribat tur DKB eerit ipfins diameter DB,propterex quod angulus adKrectus fit: \& aptetur BL hexagonilatus. Quoniam igitur angulns DBE eft crigefima pars rećti, ecit \& B D K recti pars trigefima . ergo circumferentia BK fexagefina pars eft totius circidi . eft autem \& BL totius circuli pars fexcaicir cumferenna igitur BL-decupla erix circumferentia BK:atque habet circumferentia BL ad circumferen ciam
of the square on BE . But as the square on FB is to the square on BE , so is the square on FG to the square on GE^{D}; therefore the square on FG will be double of the square on GE. But 49 is less than double of 25 , so that the square on FG has to the square on GE a ratio greater than that which 49 to 25 and FG itself has to GE a ratio greater than that 7 has to 5^{38}; but, componendo, FE has to EG a ratio greater than that which 12 has to 5 , that is, than that which 36 has to 15 , then it was proved that also GE has to EH a ratio greater than that which 15 has to 2; therefore for direct proportionality, FE will have to EH a ratio greater than that which 36 has 2 , that is, than that 18 has to 1 , for this reason FE is greater than 18 times EH ; now FE is equal to EB , therefore BE is also greater than 18 times EH , therefore BH will be much greater than 18 times $^{\mathrm{E}}$; but as BH is to HE , so is AB to BC because of the similarity of the triangles ${ }^{\mathrm{F}}$; therefore AB is also greater than 18 times BC ; but AB is the distance of the sun from the earth, as CB is the distance of the moon from the earth, therefore the distance of the sun from the earth is greater than 18 times the distance of the moon from the earth. I say that it is also less than 20 times that distance. Let DK be drawn through D parallel to EB , and about the triangle DKB let also the circle DKB be described, then DB will be its diameter because the angle at K is right; and let BL be fitted into the circle as the side of a hexagon. Then since the angle DBE is one thirtieth part of a right angle, the angle DBK is also one thirtieth part of a right angle; therefore the arc BK is one sixtieth part of the whole circle, but also BL is one six part of the whole circle therefore BL is then times the arc BK , but the arc BL has to the arc $B K$ a ratio greater than that which the straight line BL has to the

ARIST: DEMAGN:I

6

siam $B K$ maiorem proportionem, quàm retalis nea BL ad BK rectam . ergo recta BL rectx BK mis nor eft, quàm decupla.eft autem ipfius BL dupla B D. quare $B D$ ipfius $B K$ minor erit, quàm vigintupla.fed ve DB ad BK, ita AB ad BC.ergo \& AB mis nor erit, quàms vigintupla ipfius $B C$.efltq́ue $A B$ qui dem diftantia, qua fol à terra diftat; $B C$ vero diftan tia,qua luna diftat à terra.diftantia igitur qua fol 3 terra diftat diftantię, qua luna diftat à terra minor eft, quàm vigintupla.oftenfa autem eft maior; quā dnodeuigintupla.quod oftendere oportebat.

$$
\bar{F} E D_{0}
$$

straight line BK^{G}, therefore the straight line BL is less than the increased tenfold BK ; then BD is double of BL^{H}; therefore BD will be less than 20 times $B K$; but, as $D B$ is to $B K$, so is $A B$ to B^{K}. Therefore $A B$ will also less tha 20 times $B C$; but $A B$ is the distance of the sun from the earth, while $B C$ is the distance of the moon from the earth; therefore the distance of the sun from the earth is less than 20 times the distance of the moon from the earth, but it was before proved that it is greater than 18 times that distance, as it was necessary to prove.

ETDIST.SOL.ETLVNAE: 16

FED. $C O M M A N D I N V$.

Ergo circumferentia ED erit trigefima pars cir- A cumferentię EDA] Hoc in figura ita effe ponatur; namque ob loci anguftiam coacti fimus circumferëtiam DE mul to maiorem facere, quàm fit trigefima pars circumferentiae EDA.

Compleatur parallelogrammum AE, \& BF iun- B gatur]Producatur etiam BD ad reClam lineam FE in H.

Et quoniam
GEadEH ma iorem proportionem habet, quàm angulus GBE ad DBE angulum] Illud nos boc lemmate demonAtrabimus. Sit triangulum ortho-
 gonium ABC rectum habens angulum ad $\mathrm{C}: \&$ in recta linea AC fumatur quod vis punctum D,\& BD iungatur. Dico rectam lineā AC ad rectam CD maiorem proportionem habere,quàm angulus ABC habeat ad DBC angulum]

Centro enim $B \mathcal{O}$ interuallo BD circuli circumferentia EDF defcribatur, ऊ BC producatur ad F. Itaque quoniane triangulum quidem $A B D$ mius eft fectore EBD; triangulis vero DBC minus fectore DBF:babebit triangulum $\mathcal{A B D}$ ad triangulum DBC maiorem proportionem, quim fector EBD ed feťorë̆ DBF.ot autem triangulum $\mathcal{A B D}$ ad triangulum

Federico Commandino

A. Then the arc ED will be one-thirtieth part of arc: so we represent this in the picture, indeed, due to the lack of space, we are forced to represent the DE arc much larger than the 30th part of the EDA arc.
B. Let the parallelogram AE be completed and let $\mathrm{B} \& \mathrm{~F}$ be joined: and let also $B D$ produced up to H on the straight line $F E$.
C. Since GE has to EH a ratio greater than that which the angle GBE has to the angle DBE: we will prove with this lemma: let ABC be a triangle at straight angle to C and let assume on the straight line
 AC any point D and let be D\&B joined. I say that the straight line AC has a ratio greater to the straight line, CD , than that which the angle ABC has to the angle DBC. Indeed let the arc EDF be drawn with center at B and radius $B D$ and let $B C$ be produced up to F; so, since the triangle $A B D$ is greater than the sector $E B D$, then the triangle $D B C$ is less than the sector DBF, the triangle $A B D$ will be to the triangle $D B C$ a ratio greater than that which the sector $E D B$ has to the sector $D B F$; then as the triangle $A D B$ is to the triangle $D B C$,

ARIST. DEMAON.

1.sexi. DBC,ita cft recta linea $\mathcal{A D}$ ad ipfam $D C$: or vt feEfor AB

Vlr.sex D ad feiltorem DBC,ita angulus ABD ad DBC angulum. or
tu. go reCta linea \mathcal{A}
D adipfan DC
maior cen propar tioner bablet, qua engulus $\mathcal{A B D}$ ad angulum DB C:U componendo rectal inea al C ad ipfam CD, maiorem habet proportionë quă angulus AEC ad
 $D E B C$ angulum.
D Vt autem quadratum ex FB ad quadratum ex 3 E, itaquadratum ex FG ad quadratum ex GE $]$ Q niam ewm angulus FBE bifariam fecatur reeta yivea $B G$, erit ex tertia \int Sexti elementorum $2 t$ FB ad BE, ita FG ad. E:quare ex 22 eiufdem, vt quadratum ex FEad quadnatum ex BE, ita quadratum ex FG ad quadratum ex GE

Multo igitur maior erit BH, quàm duodeuigin tupla ipfius HE]Nam BH, que maiori angulo, nempe re Eto fubtendittr, maior \in ff, quïm iq $\int a-B E$.

Sed ut BH ad HE ita eft $A \mathrm{~B}$ ad BC, ab triangulo rum fimilitudinem]. Ducatur à puncto C, videlicet ab augulo recto trianguli ABC adibafin perpendiculoris CM; fient triangula BCM. ACM fimitia toti, © ('r inter /e fe. qua29. pri- xe angulus $B C M, b o c$ eft angulus HBE eft aequalis angulo E \mathscr{A}. atquc eft ACB reatus aequalis recto BEH.reliquus igi tur $\mathcal{A B C}$ reliquo BHE eft aequalus, of triangulmm trianguLo fimile.ergo vt BH ad $H E$, ita $A B$ ad $B C$.
G Atque habet circumferentia BL ad. circumferan tiam
so is the straight line $A D$ to the line $D C$; as theil sector $A B D$ is to the sector $D B C$, so the angle $A B D$ is to the angle DBC; then the straight line $A D$ has to DC a ratio greater than that which the angle $A B D$ has to the angle DBC; and,
 componendo, the straight line AC has to CD a ratio greater than that which the angle $A B C$ has to the angle $D B C .{ }^{39}$
D. But as the square on FB is to the square on BE , so is the square on FG to the square on GE: in fact since the angle FBE is cut in two equal parts by the straight line BG, from third proposition of sixth book of Elements, as FB is to BE so FG is to GE; wherefore from 22° of this book, as the the square on $F B$ is to the square on $B E$, so the square on $F G$ is to the square on $G E$.
E. Therefore BH will be much greater than 18 times HE: in fact BH, wich extend below the greater angle, which is right, is greater then $B E$.
F. But as BH is to HE , so is AB to BC because of the similarity of the triangles: let the perpendicular CM be drawn from point C to the base, that is from the right angle of the triangle $A B$; the triangles $B C M$ and $A C M$ will be completely similar between them, therefore the angle BCM, that is the angle HBE is equal to the angle BAC and the right angle $A C B$ is equal to BEH also right, then the remaining $A B C$ is equal to the remaining $B H E$, therefore the triangles are similar; then as $B H$ is to $H E$, so $A B$ is $t o B C$.
G. but the arc BL has to the arc BK a ratio greater than that which the straight line BL has to the

ET DIST, SOL.ETLVNAE. IT

ciam $B K$ maiorem proportionem, quàm recta linea BL ad BK rectam. JEx demon/iratis a Ptolemeo in prin. cipio magne conftructions.

Eft autem ipfius BL dupla BD I Ex corollario quime en If decime quartilibri elerkentorrom.

Sed ut DB ad BK, ita AB ad BC job triangulorum K DBK LABC $\int \frac{1}{2}$ militudinem. Rurfus enims angulus MCB, bos of BDK eft aequalis angul 0 B $\mathcal{A} C$, reding G DXB refio $1 C$ B_{3} Eo reliquus reliquo aequalis,

I PRO-
straight line BK: from the demonstrations of Ptolemy at the beginning of Liber Magnae Costructionis.

H. Then BD is double of BLI : from the corollary of the fifteenth proposition of the fourth book of Elements.
K. But, as DB is to BK , so is AB to: by similarity of the triangles $B D K$ and $A B C$; in fact again the angle $M C B$, that is $B D K$ is equal to the angle BAC and the right angle BKD to the right angle $A C B$ and also the remaining will be equal to remaining.

NOTE

 Geometrie incipit quá foelicissime. Venetijs Erhardus Ratdolt. 1482.2 Euclide megarense philosopho: solo introduttore delle scientie mathematice diligentemente rassettato, et alla integrità ridotto per il degno professore di tal scientie Nicolo Tartalea, brisciano, secondo le due tradottioni e per comune commodo \& utilita di latino in volgar tradotto Stampato in Vinegia MDXLIII.
3 Archimedis Syracusani Philosophi ac geometrae excellentissimi Opera, quae quidem, omnia, multis iam seculis desiderata, atque à quam paucisimis hactenus visa, nunque primum et graece et latinae in lucem edita.
4 s. Umberto Bottazzini. Antichi paradigmi e nuovi metodi geometrici. In: Storia della scienza moderna e contemporanea. Vol. primo. Dalla rivoluzione scientifica all' età dei lumi. Tomo primo. TEA 2000.
5 s. Guido Castelnuovo: Le origini del calcolo infinitesimale nell'era moderna. Feltrinelli 1962.
Enrico Ruffini: Il "Metodo" di Archimede e le origini del calcolo infinitesimale nell'antichità. Feltrinelli 1961.
6 "We indicate with the term of center of gravity, that particular point placed within each body, for which if one imagines with the mind that the grave is suspended, it remains stationary while being moved and also retains the position it had at the beginning: neither rotates during movement"
7 "Now I am persuaded that if this work has pleased Your Excellency in the Latin garment, you will not mind in this our vulgar language" At the beginning of the book there is the following warning: "Admonendus es mihi, candide lector, auctorem hunc, quem tibi exibemus, Euclide usum in arabicam linguam converso, quem postea Campanus latinum fecit. Hoc dictum volui, ne in perquirendis propositionibus, quos ipse citat, quandoque te frustra excruciares.Vale."
"I must warn you, dear reader, that the author, whom we now present to you, made use of the Euclid translated into the Arabic language, then made Latin by the Campanus. And so I wanted to tell you in order that in trying propositions cited by him, no worries you sometimes vain. It's healthy."
8 The Sand Reckoner.

9 For a more in-depth look at the Greek manuscripts handed down to us by Aristarchus, see the work of Thomas Heath, John Wallis and Fortia d'Urban. (note $11,13,22$)
10 It is an angular measure obtained by determining the angle between the earth-moon and earth-sun segments when the angle moon-earth and moon-sun is right.
11 The recalculation of the earth-sun distance using the Aristarchus method, but using the lunar elongation of $89^{\circ} 51^{\prime}$, is shown in note 40 .
12 Thomas L.Heath: Aristarchus of Samos, the ancient Copernicus; a history of Greek astronomy to Aristarchus together with Aristarchus's treatise on the sizes and distances of the sun and moon a new greek text with translation and notes. Oxford at the Clarendon Press, 1913.
13 s. Lucio Russo: La rivoluzione dimenticata § 2.8. Feltrinelli, 2008
14 The passage is transalated by: Archimedis Syracusani Arenarius et Dimensio Circuli. Eutocii Ascalonitae in hanc Commentarius Cum versione \& notis Joh. Wallis,SS.TH.D. Geometriae Professoris Saviliani Oxonii E Theatro Sheldoniano 1676 (Latin translation of the Greek text opposite). The passage presents some interpretative difficulties; for further discussion see Heath Thomas L. Aristarchus of Samos, the ancient Copernicus Oxford Clarendon press, 1913 p. 301 and f.
To deepen the subject s.n. 12 and Pierre Duhem: Sauver les apparences Paris Vrin 2003
16 First Kepler's law: "sequenti capite, ubi simul etiam demonstrabitur, nullam Planetæ relinqui figuram Orbitæ, praeterquam perfecte ellipticam; conspirantibus rationibus. a principiis Physicis, derivatis, cum experientia obserrvationum et hypotheseos vicariae hoc capite allegata".
Second Kepler's law: a radius vector joining any planet centre to the centre of the sun sweeps out equal areas in equal lengths of time.
Regula I: causas rerum naturalium non plures admitti debere, quam quae et verae sint et earum phaenomenis explicandis sufficiant. Dicunt utique philosophi: Natura nihil agit frustra, \& frustra sit per plura quod fieri potest per pauciora. Natura enim simplex est \& rerum causis superfluis non luxuriat.
18 The greek notation is taken by Heath (s. n.11), by Fortia D’Urban (s.n. 22) the same nambers are shown as follows: $\rho \kappa \varepsilon^{\prime} \theta, \psi 1 \beta^{\prime}=1259712$, $' \zeta \theta, \varphi \zeta '=79507$. Commandino does not say from which manuscript sources he transalated the text.
19
De Arenae Numero or Arenarius.
20
The sphere in which the moon moves.

Fortia D'Urban thus translates: "Lorsque la lune nous parait dikhotome (coupée en deux portions égales), elle offre à nos regards son grand cercle, qui détermine la partie éclairée et la partie obscure de cet aster". However it seems clear to us that for circulum maximum we must understand the flat figure and not its perimeter, so it is the plane of the maximum circle that passes through our point of view. Commandino in fact distinguishes circulus from circumferentia.
Fortia D'Urban: Traité d'Aristarque de Samos, sur les grandeurs et les distances du soleil et de la lune et fragment de Héron de Bisance sur le mesures. Paris, Firmin Didot. 1823.

On the book Pappi Alexandrini Mathematicae Collectiones a Federico Commandino in Latinum Conversae et Commentariis Illustratae. Bononiae ex Typographia H.H.de Ducijs MDCLX it is given 0.40.40 quintupla, et adhuc dimidio maior. "diameter" this is an obvious mistake.
No distinction is made in the text between the straight line and the segment of it.
On the extension of $A B$.
32 If $\mathrm{A}: \mathrm{B}=\mathrm{C}: \mathrm{D}$ then $(\mathrm{A}+\mathrm{B}): \mathrm{B}=(\mathrm{C}+\mathrm{D}): \mathrm{D}$
33 De iis quae vehuntur in aqua libri duo: Treatise on floating bodies galleggianti.
34 On text B (obvious mistake)
35 On text $D O$ (obvious mistake)
36 You mean: below the sphere of the sun or, if you prefer, it has an orbit contained within that of the sun.
37 If we try to repeat the reasoning of Aristarchus by hypothesizing that the lunar elongation in quadrature is not 87° but $89^{\circ} 51^{\prime}$ (ie 5391 '), the distance of the sun from the earth falls between 360 and 400 times the distance of the moon from the earth. This result is close to the currently accepted average one.

For instance:

Abstract

4. Hypothesis

When the moon appears us halved, its distance from the sun is then less than a quadrant by six hundredth of a quadrant (or 9'), i.e. 5391 parts, these in fact differ from nine parts, which are the seventeenth part of 5400, by 5400 parts of a quadrant.

PROPOSITION VII

The distance that separates the sun from the earth is greater than three hundred and sixty times, but less than four hundred times, the distance of the moon from the earth.

Let A be the centre of the sun, whilst B that of the earth B, let A\& B joined and produced; let C be the centre of the moon when halved, let a plane be carried through AB and C which cut the sphere and let be the great circle ADE thath on which the centre of the sun moves, and let A\&C and C\&B be joined and let BC be produced to D . The angle ACB will be certainly right, because the point C is the centre of the moon when halved; let BE be drawn from B at right angles to BA itself, then the arc ED will be onethirtieth part of arc EDA; indeed, by hypothesis, when the moon appears to us halved, its distance from the sun is less than a quadrant by one-thirtieth of a quadrant, therefore the angle BC is also one-thirtieth part of a right angle. Let the parallelogram AE be completed and let B\&F be joined, the angle FBE will be half a right angle. Let the angle FBE be bisected by the straight-line BG , then the angle GBE is one fourth part of a right angle, but DBE is also one six hundredth part of a right angle, therefore the ratio of the angle GBE to the angle DBE is than which 15 has to $1 / 10$; if we divided a right angle into 60 equal parts then the angle GBE is made up of 15 of those parts, while the angle DBE of $1 / 10$. Since GE has to EH a ratio greater than that which the angle GBE has to the angle DBE, therefore GE will have to EH a ratio greater than that which 15 has to $1 / 10$; but since BE is also equal to EF , at the angle at E is right; therefore the square on FB is double of the square on BE . But as the square on FB is to the square on BE , so is the square on FG to the square on GE ; therefore the square on FG will be double of the square on GE. But 49 is less than double of 25 , so that the square on FG has to the square on GE a ratio greater than that which 49
to 25 and FG itself has to GE a ratio greater than that 7 has to 5 ; but componendo FE has to EG a ratio greater than that which 12 has to 5, that is, than that which 36 has to 15 , then it was proved that also GE has to EH a ratio greater than that which 15 has to $1 / 10$; therefore for direct proportionality, FE will have to EH a ratio greater than that which 36 has $1 / 10$, that is, than that 360 has to 1 , for this reason FE is greater than 360 times EH ; now FE is equal to EB , therefore BE is also greater than 360 times EH , therefore BH will be much greater than 360 times; but as BH is to HE , so is AB to BC because of the similarity of the triangles; therefore AB is also greater than 360 times BC ; but AB is the distance of the sun from the earth, as CB is the distance of the moon from the earth, therefore the distance of the sun from the earth is greater than 360 times the distance of the moon from the eart. I say that it is also less than 400 times that distance. Let DK be drawn through D parallel to EB, and about the triangle DKB let also the circle DKB be described, then DB will be its diameter because the angle at K is right; and let BL be fitted into the circle as the side of a hexagon. Then since the angle DBE is one six hundredth part of a right angle, the angle DBK is also one six hundredth part of a right angle; therefore the arc BK is one sixtieth part of the whole circle, but also BL is one six part of the whole circle therefore BL is two hundred times the arc BK , but the arc BL has to the arc BK a ratio greater than that which the straight line BL has to the straight line BK, therefore the straight line BL is less than the increased two hundredfold BK ; then BD is double of BL ; therefore BD will be less than 400 times BK ; but, as DB is to BK , so is $A B$ to $B C$. Therefore $A B$ will also less tha 400 times $B C$; but $A B$ is the distance of the sun from the earth, while BC is the distance of the moon from the earth; therefore the distance of the sun from the earth is less than 400 times the distance of the moon from the earth, but it was before proved that it is greater than 360 times that distance, as it was necessary to prove.
The Pythagoras theorem states that the square of the hypotenuse is equal to the sum of the squares of the catheti. In the case of triangle FEB the catheti are equals, consequently, if the value 5 is assigned to the catheti, the square on the hypotenuse will be 50 , but the number 49 , which is earlier, has as its square root 7 . This allows an approximate expression of the square root of $2(50=25 \times 2, \quad \sqrt{50}=\sqrt{25 x 2}=5 \sqrt{2}$, but $\sqrt{50} \sim 7$ therefore $7 \sim 5 \sqrt{2}$, then $\frac{7}{5} \sim \sqrt{2}$).
39 As demonstrated by Commandino can be expressed with the known proposition: $\quad\left(A B C>D B C<90^{\circ}\right)$
\square

